临床荟萃 ›› 2024, Vol. 39 ›› Issue (1): 20-29.doi: 10.3969/j.issn.1004-583X.2024.01.003

• 论著 • 上一篇    下一篇

基于生物信息学筛选影响胃癌患者预后的糖酵解相关基因

赵旭辉1, 黄小敏1, 达德转2, 许焱1, 崔晓东1, 李红玲2()   

  1. 1.甘肃中医药大学第一临床医学院,甘肃 兰州 730000
    2.甘肃省人民医院 肿瘤内科,甘肃 兰州 730000
  • 收稿日期:2023-06-17 出版日期:2024-01-20 发布日期:2024-03-22
  • 通讯作者: 李红玲,Email: lihongling1969@126.com
  • 基金资助:
    甘肃省人民医院院内科研基金项目——EBV-miRNA-BART6-5p 介导 TGF-β/SMAD4 信号通路促进胃癌细胞糖酵解的机制研究(22GSSYD-37)

Screening of glycolysis-related genes for predicting the prognosis of patients with gastric cancer: Based on bioinformatics

Zhao Xuhui1, Huang Xiaomin1, Da Dezhuan2, Xu Yan1, Cui Xiaodong1, Li Hongling2()   

  1. 1. First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730000, China
    2. Department of Oncology, Gansu Provincial Hospital, Lanzhou 730000, China
  • Received:2023-06-17 Online:2024-01-20 Published:2024-03-22

摘要:

目的 通过利用生物信息学开发糖酵解相关基因以预测胃癌(gastric cancer, GC)患者预后。方法 使用癌症基因组图谱数据库中GC患者信使核糖核酸表达谱数据, 通过进行基因集富集分析以鉴定GC组织和正常组织间显著差异的基因集。通过最小绝对收缩和选择算子回归分析构建糖酵解相关基因预测GC患者预后的模型,并使用 Kaplan-Meier 分析、受试者工作特征曲线、单因素及多因素 Cox 回归分析验证模型预测性能。采用基因集变异分析分析高低风险组间生物途径状态的差异。结果 获得15个糖酵解相关基因(PFKFB2、UHRF1、ACYP1、CLDN9、STC1、EFNA3、NUP50、ADH4、ANGPTL4、PKP2、VCAN、HIF 1A、LHX9、ANKZF1、ALDH3A2)与GC患者预后相关。根据15个基因特征风险评分,通过Cox回归分析将患者分为高风险组和低风险组。这15个基因标记是GC患者预后的独立生物标志物,低风险评分的GC患者预后更好。结合基因标记和临床预后因素的列线图可有效预测总生存期及无疾病生存期。结论 建立的15个糖酵解相关基因标记可作为预测GC患者预后的可靠工具,可能为GC提供潜在的糖酵解治疗靶点。

关键词: 胃肿瘤, 预后, 预测模型, 糖酵解

Abstract:

Objective To construct a glycolysis-related gene model for predicting the prognosis of gastric cancer (GC) patients based on bioinformatics. Methods The messenger RNA expression profiles of GC patients were analyzed in The Cancer Genome Atlas program, and gene sets with significant differences between GC tissues and normal tissues were verified using gene set enrichment analysis. A glycolysis-related genes model for predicting the prognosis of GC patients was constructed using least absolute shrinkage and selection operator regression analysis, and the predictive performance of the model was validated using Kaplan-Meier survival analysis, receiver operating characteristic curve, and univariate and multivariate Cox regression analysis. Gene set variation analysis was performed to analyze the differences in biological pathway states between high-risk and low-risk groups. Results Fourteen glycolysis-related genes (PFKFB2、UHRF1、ACYP1、CLDN9、STC1、EFNA3、NUP50、ADH4、ANGPTL4、PKP2、VCAN、HIF 1A、LHX9、ANKZF1、ALDH3A2) were identified as prognostic markers for GC patients. Based on a risk score derived from these 15 gene features using Cox regression analysis, patients were classified into high-risk and low-risk groups. These 15 gene markers were independent biomarkers for predicting the prognosis, and patients with a low-risk score had a better prognosis. The combination of gene markers and clinical prognostic factors in a Nomogram effectively predicted overall survival and disease-free survival. Conclusion The established panel of 15 glycolysis-related gene markers can serve as reliable tools for predicting the prognosis of GC patients and may provide potential targets for glycolysis-targeted therapy in GC.

Key words: stomach neoplasms, prognostic, predictive models, glycolysis

中图分类号: