摘要:
岩藻黄素是一种从褐藻和硅藻中提取的天然类胡萝卜素,具有抗氧化、抗炎、促进细胞凋亡等多种生物学特性。研究表明,岩藻黄素具有神经保护的作用,主要通过抗氧化和抗炎机制实现,并在认知障碍和神经退行性疾病中显示出潜在的治疗价值。本文总结了岩藻黄素在减轻氧化应激和神经炎症方面的具体机制,为其在认知障碍类疾病中的临床应用提供理论依据和参考。
中图分类号:
马千里. 岩藻黄素在认知障碍类疾病中的研究进展[J]. 临床荟萃, 2024, 39(6): 572-576.
模型 | 体内/体外实验 | 病种 | 机制 | 结果 | 参考文献 |
---|---|---|---|---|---|
无 | 体外 | 帕金森病 | 通过氢键和疏水相互作用强烈结合MAO以可逆竞争方式抑制MAO-和MAO-B | 岩藻黄素能可逆性竞争MAO,可用于治疗帕金森病 | Zielińska-Nowak等[ |
大脑中动脉损伤模型 | 体内体外均有 | 无 | 诱导Nrf2核转位并增强HO-1 | 岩藻黄素可以作为保护神经元免受脑缺血再灌注损伤的治疗药物 | Hu等[ |
创伤性脑损伤模型 | 体内体外均有 | 无 | 激动Nrf2-ARE | 岩藻黄素可提高神经元存活率并降低ROS)水平 | Zhang等[ |
帕金森病模型 | 体内 | 帕金森病 | 抑制α-突触核蛋白表达和氧化应激 | 岩藻黄素可以对抗MPTP介导的帕金森病模型小氧的病理变化 | Mumu等[ |
AD模型 | 体外 | AD | 有效减少Aβ纤维和低聚物的形成且显著降低Aβ寡聚物的体外神经毒性 | 岩藻黄素可能通过抑制Aβ聚集和减弱Aβ神经毒性来改善AD | Xiang等[ |
AD模型 | 体内体外均有 | AD | 抗氧化、抗炎以及抑制乙酰胆碱酯酶酶活性、Aβ (1-42)积累 | 岩藻黄素对AD的治疗效果较好 | Lin等[ |
无 | 体外 | 无 | 与多巴胺受体结合发挥激动剂作用的潜在机制涉及到特定的氨基酸残基。这些机制包括与D3受体的Ser196和Thr115位点结合,以及与D4受体的Ser196和Asp115位点结合。这种结合促使受体激活,进而发挥其生物学功能 | 岩藻黄素是一种潜在的D3/D4激动剂,可用于治疗帕金森病等神经退行性疾病 | Paudel等[ |
表1 岩藻黄素研究总结
模型 | 体内/体外实验 | 病种 | 机制 | 结果 | 参考文献 |
---|---|---|---|---|---|
无 | 体外 | 帕金森病 | 通过氢键和疏水相互作用强烈结合MAO以可逆竞争方式抑制MAO-和MAO-B | 岩藻黄素能可逆性竞争MAO,可用于治疗帕金森病 | Zielińska-Nowak等[ |
大脑中动脉损伤模型 | 体内体外均有 | 无 | 诱导Nrf2核转位并增强HO-1 | 岩藻黄素可以作为保护神经元免受脑缺血再灌注损伤的治疗药物 | Hu等[ |
创伤性脑损伤模型 | 体内体外均有 | 无 | 激动Nrf2-ARE | 岩藻黄素可提高神经元存活率并降低ROS)水平 | Zhang等[ |
帕金森病模型 | 体内 | 帕金森病 | 抑制α-突触核蛋白表达和氧化应激 | 岩藻黄素可以对抗MPTP介导的帕金森病模型小氧的病理变化 | Mumu等[ |
AD模型 | 体外 | AD | 有效减少Aβ纤维和低聚物的形成且显著降低Aβ寡聚物的体外神经毒性 | 岩藻黄素可能通过抑制Aβ聚集和减弱Aβ神经毒性来改善AD | Xiang等[ |
AD模型 | 体内体外均有 | AD | 抗氧化、抗炎以及抑制乙酰胆碱酯酶酶活性、Aβ (1-42)积累 | 岩藻黄素对AD的治疗效果较好 | Lin等[ |
无 | 体外 | 无 | 与多巴胺受体结合发挥激动剂作用的潜在机制涉及到特定的氨基酸残基。这些机制包括与D3受体的Ser196和Thr115位点结合,以及与D4受体的Ser196和Asp115位点结合。这种结合促使受体激活,进而发挥其生物学功能 | 岩藻黄素是一种潜在的D3/D4激动剂,可用于治疗帕金森病等神经退行性疾病 | Paudel等[ |
[1] | Pérez Palmer N, Trejo Ortega B, Joshi P. Cognitive impairment in older adults: Epidemiology, diagnosis, and treatment[J]. Psychiatr Clin North Am, 2022, 45(4):639-661. |
[2] | van Weelden G, Bobiński M, Okła K, et al. Fucoidan structure and activity in relation to anti-cancer mechanisms[J]. Mar Drugs, 2019, 17(1):32. |
[3] | de Melo KDCM, Lisboa LDS, Queiroz MF, et al. Antioxidant activity of fucoidan modified with gallic acid using the redox method[J]. Mar Drugs. 2022 ;20(8):490. |
[4] | Wang Y, Xing M, Cao Q, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies[J]. Mar Drugs, 2019 ;17(3):183. |
[5] | An JR, Su JN, Sun GY, et al. Liraglutide alleviates cognitive deficit in db/db mice: Involvement in oxidative stress, iron overload, and ferroptosis[J]. Neurochem Res, 2022, 47(2):279-294. |
[6] | An Y, Feng L, Zhang X, et al. Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1[J]. Clin Epigenetics, 2019, 11(1):139. |
[7] | Huang X, Zhao X, Li B, et al. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment-a meta-analysis of randomized controlled trials[J]. Aging, 2020, 12(4):4010-4039. |
[8] |
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease[J]. Neurobiol Aging, 2021, 107 :86-95.
doi: 10.1016/j.neurobiolaging.2021.07.014 pmid: 34416493 |
[9] |
Yao Y, Clark CM, Trojanowski JQ, et al. Elevation of 12/15 lipoxygenase products in AD and mild cognitive impairment[J]. Ann Neurol, 2005, 58(4):623-626.
pmid: 16037976 |
[10] | Elbaz EM, Essam RM, Ahmed KA, et al. Donepezil halts acetic acid-induced experimental colitis in rats and its associated cognitive impairment through regulating inflammatory/oxidative/apoptotic cascades: An add-on to its anti-dementia activity[J]. Int Immunopharmacol, 2023, 116:109841. |
[11] | Asa H, Chunni Z, Aroa RG, et al. Deuterium‐reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington's disease[J]. TFEBS J, 2018, 285(16): 3002-3012. |
[12] | Raefsky SM, Furman R, Milne G, et al. Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid β-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2018:165-176. |
[13] | Liu X, Dilxat T, Shi Q, et al. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling[J]. Gene, 2022, 822 :146348. |
[14] | Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11):2579 |
[15] | Yan N, Xu Z, Qu C, et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98:107844. |
[16] |
Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: A 12-month randomized controlled trial[J]. J Alzheimers Dis, 2020, 78(4):1509-1518.
doi: 10.3233/JAD-200926 pmid: 33164936 |
[17] | Zhang X, Yuan M, Yang S, et al. Enriched environment improves post-stroke cognitive impairment and inhibits neuroinflammation and oxidative stress by activating Nrf2-ARE pathway[J]. Int J Neurosci, 2021, 131(7): 641-649. |
[18] | Bae M, Kim MB, Park YK, et al. Health benefits of fucoxanthin in the prevention of chronic diseases, Biochimica et biophysica acta[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(11) :158618. |
[19] | Din NAS, Mohd Alayudin 'S, Sofian-Seng NS, et al. Brown algae as functional food source of fucoxanthin:A review[J]. Foods, 2022, 11(15):2235. |
[20] |
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention[J]. Food Funct. 2023, 14(17):7799-7824.
doi: 10.1039/d3fo02330c pmid: 37593767 |
[21] |
Foo SC, Yusoff FM, Ismail M, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents[J]. J Biotechnol, 2017, 241 :175-183.
doi: S0168-1656(16)31626-1 pmid: 27914891 |
[22] | Sun H, Yang S, Zhao W, et al. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application[J]. Crit Rev Food Sci Nutr. 2023 ;63(26):7996-8012. |
[23] |
Ha AW, Na SJ, Kim WK. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet[J]. Nutr Res Pract, 2013, 7(6): 475-80.
doi: 10.4162/nrp.2013.7.6.475 pmid: 24353833 |
[24] | Karpiński TM, Adamczak A. Adamczak, fucoxanthin-An antibacterial carotenoid[J]. Antioxidants, 2019, 8(8):239. |
[25] | Zielińska-Nowak E, Cichon N, Saluk-Bijak J, et al. Nutritional supplements and neuroprotective diets and their potential clinical significance in post-stroke rehabilitation[J]. Nutrients, 2021, 13(8):2704. |
[26] | Mumu M, Das A, Emran TB, Mitra S, et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets[J]. Front Pharmacol, 2022, 13:929442. |
[27] | Neumann U, Derwenskus F, Flaiz Flister V, et al. Fucoxanthin, A carotenoid derived from phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro[J]. Antioxidants, 2019, 8(6):183. |
[28] |
Yang H, Xing R, Liu S, et al. Role of fucoxanthin towards cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities[J]. Bioengineered, 2021, 12(1) 7235-7247.
doi: 10.1080/21655979.2021.1973875 pmid: 34569908 |
[29] | Oliyaei N, Moosavi-Nasab M, Tanideh N, et al. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights[J]. Brain Res Bull, 2023, 193:11-21. |
[30] | Xu Y, Jiang C, Wu J, et al. Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer's disease[J]. CNS Neurosci Ther, 2022, 28(4) :580-592. |
[31] |
Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials[J]. Cell, 2023, 186(22):4757-4772.
doi: 10.1016/j.cell.2023.09.023 pmid: 37848035 |
[32] | 2022 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2022, 18(4):700-789. |
[33] | Ahmad T, Eapen MS, Ishaq M, et al. Anti-inflammatory activity of fucoidan extracts in vitro[J]. Mar drugs, 2021, 19(12):702. |
[34] | Akter R, Afrose A, Rahman MR, et al. A comprehensive analysis into the therapeutic application of natural products as SIRT6 modulators in Alzheimer's disease, aging, cancer, inflammation, and diabetes[J]. Int J Mol Sci, 2021, 22(8):4180. |
[35] |
Dark HE, An Y, Duggan MR, et al. Alzheimer's and neurodegenerative disease biomarkers in blood predict brain atrophy and cognitive decline[J]. Alzheimers Res Ther, 2024, 16(1):94.
doi: 10.1186/s13195-024-01459-y pmid: 38689358 |
[36] |
Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis[J]. Ageing Res Rev, 2019, 50:1-8.
doi: S1568-1637(18)30306-4 pmid: 30610927 |
[37] | Qiu S, Palavicini JP, Wang J, et al. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer's disease-like neuroinflammation and cognitive impairment[J]. Mol Neurodegener, 2021, 16(1) :64. |
[38] | Tian Z, Ji X, Liu J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects[J]. Int J Mol Sci, 2022, 23(11):6224. |
[39] | Wang Y, Lin Y, Wang L, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer's disease mice[J]. Aging, 2020, 12(20):20862-20879. |
[40] | Mumu M, Das A, Emran TB, et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets[J]. Front Pharmacol, 2022, 13:929442. |
[41] | El-Far YM, Khodir AE, Emarah ZA, et al. Fucoidan ameliorates hepatocellular carcinoma induced in rats: Effect on miR143 and inflammation[J]. Nutr Cancer, 2021, 73(8):1498-1510. |
[42] | Liu Y, Huang H, Xu Z, et al. Fucoidan protects the pancreas and improves glucose metabolism through inhibiting inflammation and endoplasmic reticulum stress in T2DM rats[J]. Food Funct, 2022, 13(5):2693-2709. |
[43] |
Park J, Cha JD, Choi KM, et al. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo[J]. Int Immunopharmacol, 2017, 43:91-98.
doi: S1567-5769(16)30498-2 pmid: 27987467 |
[44] | Infantino R, Boccella S, Scuteri D, et al. Guida, 2-pentadecyl-2-oxazoline prevents cognitive and social behaviour impairments in the Amyloid β-induced Alzheimer-like mice model: Bring the α2 adrenergic receptor back into play[J]. Biomed Pharmacother, 2022, 156:113844. |
[45] |
Zhao D, Kwon SH, Chun YS, et al. Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-κB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells[J]. Neurochem Res, 2017, 42(2):667-677.
doi: 10.1007/s11064-016-2123-6 pmid: 27933547 |
[46] | Chen Y, Lu H, Ding Y, et al. Dietary protective potential of fucoxanthin as an active food component on neurological disorders[J]. J Agric Food Chem, 2023, 71(8):3599-3619. |
[47] | Li J, Liu W, Sun W, et al. A study on autophagy related biomarkers in Alzheimer's disease based on bioinformatics[J]. Cell Mol Neurobiol, 2023, 43(7):3693-3703. |
[48] |
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: Insight into the signaling pathways and therapeutic avenues[J]. Apoptosis, 2023, 28(7-8):943-957.
doi: 10.1007/s10495-023-01848-y pmid: 37186274 |
[49] |
Liu J, Li L. Targeting autophagy for the treatment of Alzheimer's disease: Challenges and opportunities[J]. Front Mol Neurosci, 2019, 12:203.
doi: 10.3389/fnmol.2019.00203 pmid: 31507373 |
[50] | Qin C, Bai L, Li Y, et al. The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer's disease: Crosstalk between autophagy and apoptosis[J]. Stem Cell Res Ther. 2022 ;13(1):90. |
[51] |
Hu L, Chen W, Tian F, et al. Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling[J]. Biomed Pharmacother, 2018, 106:1484-1489.
doi: S0753-3322(18)32025-0 pmid: 30119223 |
[52] | Zhang L, Wang H, Fan Y, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways[J]. Sci Rep, 2017, 7(1):46763. |
[53] | Mumu M, Das A, Emran TB, et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets[J]. Front Pharmacol, 2022, 13:929442. |
[54] | Xiang S, Liu F, Lin J, et al. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments[J]. Agric Food Chem, 2017, 65(20):4092-4102. |
[55] | Lin J, Huang L, Yu J, et al. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro[J]. Mar Drugs, 2016, 14(4):67. |
[56] | Paudel P, Seong SH, Jung HA, et al. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist: Relevance to Parkinson's disease[J]. Chem Biol Interact, 2019, 310:108757. |
[1] | 包娟, 王婷, 刘红, 周维娟, 张敏. 脑小血管病患者认知障碍及步态异常的康复研究进展[J]. 临床荟萃, 2024, 39(3): 269-273. |
[2] | 肖煌怡, 袁建坤, 严梓予, 曾雯姝, 鲁兰莫, 王峻. 认知干预对遗忘型轻度认知障碍老年患者干预效果的meta分析[J]. 临床荟萃, 2024, 39(1): 12-19. |
[3] | 辛燕红, 郎桂艳, 陈子为, 王东玉. 中性粒细胞-淋巴细胞比值和血小板-淋巴细胞比值预测急性轻型缺血性脑卒中患者认知障碍的价值[J]. 临床荟萃, 2023, 38(6): 504-509. |
[4] | 吕丽丽, 翟满满, 丁小艳, 陈永清. 线粒体转录因子A介导的线粒体功能障碍在糖尿病心肌病中的作用[J]. 临床荟萃, 2023, 38(5): 465-468. |
[5] | 张亚, 张慧, 赵靖宇, 吕佩源, 董艳红. 计算机化认知训练在认知障碍中的应用进展[J]. 临床荟萃, 2023, 38(5): 455-458. |
[6] | 贾阳娟, 韩凝, 郭慧, 李岩鹏, 李灿灿, 李建国. MMSE和MoCA对卒中后轻度血管性认知障碍早期筛查的价值[J]. 临床荟萃, 2023, 38(3): 221-226. |
[7] | 谢少为, 吕小涵, 董艳红, 吕佩源. 抗炎细胞因子在阿尔茨海默病中的研究进展[J]. 临床荟萃, 2023, 38(2): 185-188. |
[8] | 贾阳娟, 韩凝, 郭慧, 李灿灿, 李建国. 不同画钟试验识别急性期卒中后非痴呆型认知障碍的价值[J]. 临床荟萃, 2023, 38(2): 143-148. |
[9] | 李瑞珍, 李星辉, 曾璟, 姚晓涛, 杨珂欣, 张展. 高血压认知功能障碍机制的研究进展[J]. 临床荟萃, 2023, 38(1): 88-92. |
[10] | 王贞芸, 王兰桂. 癫痫共患认知功能障碍的机制研究进展[J]. 临床荟萃, 2022, 37(8): 753-758. |
[11] | 周彦伶, 朱斌斌, 曹盎洋, 罗文君. 虚拟现实技术改善神经认知障碍的研究进展[J]. 临床荟萃, 2022, 37(8): 743-747. |
[12] | 郭畅, 沈慧楠, 孙艺萌, 王东玉. 血脂、同型半胱氨酸与帕金森病合并认知障碍相关性[J]. 临床荟萃, 2022, 37(2): 128-132. |
[13] | 张江, 刘春燕, 陶怡凝, 常莉莎. 远隔缺血适应在脑血管疾病中的临床应用研究进展[J]. 临床荟萃, 2021, 36(3): 277-280. |
[14] | 刘亭, 姬卫东, 杨青松. 脑蛋白水解物对急性脑卒中患者Nrf2氧化应激信号通路的影响[J]. 临床荟萃, 2021, 36(11): 996-1000. |
[15] | 张晶,包鑫,梁文霞,聂倩文,张正义. 慢性心力衰竭相关认知功能障碍研究进展[J]. 临床荟萃, 2020, 35(7): 657-661. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||