临床荟萃 ›› 2024, Vol. 39 ›› Issue (8): 758-762.doi: 10.3969/j.issn.1004-583X.2024.08.013
收稿日期:
2024-01-01
出版日期:
2024-08-20
发布日期:
2024-09-03
通讯作者:
帖彦清, Email:tyq1995@126.com
Received:
2024-01-01
Online:
2024-08-20
Published:
2024-09-03
摘要:
锌为人体内必需微量元素, 参加各种物质的新陈代谢过程, 在细胞抗氧化,抗焦亡和促进身体发育过程中起着关键的作用。改善锌稳态可以减少糖尿病并发症的发生,但机制尚未完全研究清楚。本文介绍了锌稳态在糖尿病及并发症中的作用,以期对糖尿病的治疗提供新思路。
中图分类号:
张孟辉, 王新颖, 王树松, 帖彦清. 锌稳态在糖尿病及并发症中的作用[J]. 临床荟萃, 2024, 39(8): 758-762.
参考文献 | 糖尿病模型 | 锌的剂量 | 效果 |
---|---|---|---|
Barman等[ | 链脲佐菌素链(Streptozocin, STZ)糖尿病大鼠 | 饮食中锌含量是正常的5倍和10倍,持续6周 | 通过补充对氧化的保护作用,应激诱发的炎症 |
Aziz等[ | 2型糖尿病大鼠 | 10 mg/kg锌持续4周 | 降低空腹血糖, 胰岛素抵抗指数,高胆固醇血症 |
Lu等[ | 2型糖尿病模型 | 15 mg/kg的 ZnSO4,持续8周 | 显著改善心肌病变,显著增加金属硫蛋白水平改善糖尿病小鼠睾丸氧化应激,凋亡等指标 |
Ranasinghe等[ | 糖尿病前期受试者 | 每天20 mg硫酸锌,持续12个月 | 缓解糖尿病肾病的进展 |
Liu等[ | STZ糖尿病大鼠 | 5 mg/(kg·d), 持续4周 | 锌通过刺激金属硫蛋白合成和下调氧化应激,提高神经的传导率 |
表1 补锌对糖尿病及并发症的影响
参考文献 | 糖尿病模型 | 锌的剂量 | 效果 |
---|---|---|---|
Barman等[ | 链脲佐菌素链(Streptozocin, STZ)糖尿病大鼠 | 饮食中锌含量是正常的5倍和10倍,持续6周 | 通过补充对氧化的保护作用,应激诱发的炎症 |
Aziz等[ | 2型糖尿病大鼠 | 10 mg/kg锌持续4周 | 降低空腹血糖, 胰岛素抵抗指数,高胆固醇血症 |
Lu等[ | 2型糖尿病模型 | 15 mg/kg的 ZnSO4,持续8周 | 显著改善心肌病变,显著增加金属硫蛋白水平改善糖尿病小鼠睾丸氧化应激,凋亡等指标 |
Ranasinghe等[ | 糖尿病前期受试者 | 每天20 mg硫酸锌,持续12个月 | 缓解糖尿病肾病的进展 |
Liu等[ | STZ糖尿病大鼠 | 5 mg/(kg·d), 持续4周 | 锌通过刺激金属硫蛋白合成和下调氧化应激,提高神经的传导率 |
[1] | Singh H, Singh R, Singh A, et al. Role of oxidative stress in diabetes-induced complications and their management with antioxidants[J]. Arch Physiol Biochem, 2023:1-26. |
[2] | Mammadova-Bach E, Braun A. Zinc homeostasis in platelet-related diseases[J]. Int J Mol Sci, 2019, 20(21):5258. |
[3] |
Hongfang G, Guanghui C, Khan R, et al. Review: Molecular structure and functions of zinc binding metallothionein-1 protein in mammalian body system[J]. Pak J Pharm Sci, 2020, 33(4):1719-1726.
pmid: 33583807 |
[4] | Barman S, Srinivasan K. Diabetes and zinc dyshomeostasis:Can zinc supplementation mitigate diabetic complications?[J]. Crit Rev Food Sci Nutr, 2022, 62(4):1046-1061. |
[5] | Kirschke STCP. Zinc transporter7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake[J]. FEBS J, 2016, 2(283):378-394. |
[6] |
Parsons DS, Hogstrand C, Maret W. The C-terminal cytosolic domain of the human zinc transporter ZnT8 and its diabetes risk variant[J]. FEBS J, 2018, 285(7):1237-1250.
doi: 10.1111/febs.14402 pmid: 29430817 |
[7] | Catapano MC, Parsons DS, Kotuniak R, et al. Probing the structure and function of the cytosolic domain of the human zinc transporter ZnT8 with nickel(ii) ions[J]. Int J Mol Sci, 2021, 22(6):2940. |
[8] | Xue J, Xie T, Zeng W, et al. Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations[J]. Elife, 2020, 9:e58823. |
[9] | Daniels MJ, Jagielnicki M, Yeager M. Structure/function analysis of human ZnT8 (SLC30A8): A diabetes risk factor and zinc transporter[J]. Curr Res Struct Biol, 2020, 2:144-155. |
[10] | Mashal S, Khanfar M, Al-Khalayfa S, et al. SLC30A8 gene polymorphism rs13266634 associated with increased risk for developing type 2 diabetes mellitus in Jordanian population[J]. Gene, 2021, 768:145279. |
[11] | Dong F, Zhang BH, Zheng SL, et al. Association between SLC30A8 rs13266634 polymorphism and risk of T2DM and IGR in Chinese population: A systematic review and meta-analysis[J]. Front Endocrinol (Lausanne), 2018, 9:564. |
[12] | Zeng Q, Tan B, Han F, et al. Association of solute carrier family 30 A8 zinc transporter gene variations with gestational diabetes mellitus risk in a Chinese population[J]. Front Endocrinol (Lausanne), 2023, 14:1159714. |
[13] | Hu J. Toward unzipping the ZIP metal transporters: Structure, evolution, and implications on drug discovery against cancer[J]. FEBS J, 2021, 288(20): 5805-5825. |
[14] | Liu Y, Batchuluun B, Ho L, et al. Characterization of zinc influx transporters (ZIPs) in pancreatic beta cells: Roles in regulating cytosolic zinc homeostasis and insulin secretion[J]. J Biol Chem, 2015, 290(30):18757-18769. |
[15] | Ruz M, Andrews-Guzman M, Arredondo-Olguin M. Modulation of zinc transporter expressions by additional zinc in C2C12 cells cultured in a high glucose environment and in the presence of insulin or interleukin-6[J]. Biol Trace Elem Res, 2023, 201(7):3428-3437. |
[16] | Shaghayegh Norouzi JASS. Zinc transporters and insulin resistance: Therapeutic implications for type 2 diabetes and metabolic disease[J]. J BIOMED, 2017, 24(1):87. |
[17] | Adulcikas J, Sonda S, Norouzi S, et al. Targeting the zinc transporter ZIP7 in the treatment of insulin resistance and type 2 diabetes[J]. Nutrients, 2019, 11(2): 408. |
[18] | Norouzi S, Adulcikas J, Henstridge DC, et al. The zinc transporter zip7 is downregulated in skeletal muscle of insulin-resistant cells and in mice fed a high-fat diet[J]. Cells, 2019, 8(7):663. |
[19] | Fukunaka A, Fukada T, Bhin J, et al. Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-beta expression[J]. PLoS Genet, 2017, 13(8):e1006950. |
[20] | Hung YH, Kim Y, Mitchell SB, et al. Absence of Slc39a14/Zip14 in mouse pancreatic beta cells results in hyperinsulinemia[J]. Am J Physiol Endocrinol Metab, 2024, 326(1):E92-E105. |
[21] |
Zhang X, Guan T, Yang B, et al. Effects of ZnT8 on epithelial-to-mesenchymal transition and tubulointerstitial fibrosis in diabetic kidney disease[J]. Cell Death Dis, 2020, 11(7):544.
doi: 10.1038/s41419-020-2731-6 pmid: 32681069 |
[22] | Chi Y, Zhang X, Liang D, et al. ZnT8 exerts anti-apoptosis of kidney tubular epithelial cell in diabetic kidney disease through TNFAIP3-NF-kappaB signal pathways[J]. Biol Trace Elem Res, 2023, 201(5):2442-2457. |
[23] |
Jiang Y, Xie X, Li Z, et al. Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition[J]. Cancer Res, 2011, 71(8):2959-2968.
doi: 10.1158/0008-5472.CAN-10-4077 pmid: 21385899 |
[24] | Wu K, Fei L, Wang X, et al. ZIP14 is involved in iron deposition and triggers ferroptosis in diabetic nephropathy[J]. Metallomics, 2022, 14(7):mfac034. |
[25] | Tang Z, Wang P, Dong C, et al. Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy[J]. Oxid Med Cell Longev, 2022, 2022:5913374. |
[26] |
Lin W, Li D, Cheng L, et al. Zinc transporter Slc39a8 is essential for cardiac ventricular compaction[J]. J Clin Invest, 2018, 128(2):826-833.
doi: 10.1172/JCI96993 pmid: 29337306 |
[27] |
Wang J. Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice[J]. J Cell Mol Med, 2019, 23(9):6319-6330.
doi: 10.1111/jcmm.14520 pmid: 31270951 |
[28] | Luo Y, Zhao J, Han X, et al. Relationship between serum zinc level and microvascular complications in patients with type 2 diabetes[J]. Chin Med J (Engl), 2015, 128(24):3276-3282. |
[29] |
Huang S, Wang J, Men H, et al. Cardiac metallothionein overexpression rescues diabetic cardiomyopathy in Akt2-knockout mice[J]. J Cell Mol Med, 2021, 25(14):6828-6840.
doi: 10.1111/jcmm.16687 pmid: 34053181 |
[30] | 刘文娇, 马婧, 韩瑞钰, 等. 锌转运蛋白在糖尿病雄性大鼠性腺组织中的表达[J]. 中国男科学杂志, 2020, 34(5):7-12. |
[31] | Sun B, Ma J, Te L, et al. Zinc-Deficient diet causes imbalance in zinc homeostasis and impaired autophagy and impairs semen quality in mice[J]. Biol Trace Elem Res, 2023, 201(5):2396-2406. |
[32] | Zhang X, Guan T, Yang B, et al. A novel role for zinc transporter 8 in the facilitation of zinc accumulation and regulation of testosterone synthesis in leydig cells of human and mouse testicles[J]. METABOLISM, 2018, 88:40-50. |
[33] | Hussein M, Fathy W, Hassan A, et al. Zinc deficiency correlates with severity of diabetic polyneuropathy[J]. Brain Behav, 2021, 11(10):e2349. |
[34] | Ali M, Aziz T. The combination of zinc and melatonin enhanced neuroprotection and attenuated neuropathy in oxaliplatin-induced neurotoxicity[J]. Drug Des Devel Ther, 2022, 16:3447-3463. |
[35] |
Wang X, Wu W, Zheng W, et al. Zinc supplementation improves glycemic control for diabetes prevention and management: A systematic review and meta-analysis of randomized controlled trials[J]. Am J Clin Nutr, 2019, 110(1):76-90.
doi: 10.1093/ajcn/nqz041 pmid: 31161192 |
[36] | Cai L, Tan Y, Watson S, et al. Diabetic cardiomyopathy-zinc preventive and therapeutic potentials by its anti-oxidative stress and sensitizing insulin signaling pathways[J]. Toxicol Appl Pharmacol, 2023, 477:116694. |
[37] |
Barman S, Pradeep SR, Srinivasan K. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats[J]. J Nutr Biochem, 2018, 54:113-129.
doi: S0955-2863(16)30662-3 pmid: 29331868 |
[38] |
Aziz NM, Kamel MY, Mohamed MS, et al. Antioxidant, anti-inflammatory, and anti-apoptotic effects of zinc supplementation in testes of rats with experimentally induced diabetes[J]. Appl Physiol Nutr Metab, 2018, 43(10):1010-1018.
doi: 10.1139/apnm-2018-0070 pmid: 29726717 |
[39] | Hosseini R, Montazerifar F, Shahraki E, et al. The effects of zinc sulfate supplementation on serum copeptin, c-reactive protein and metabolic markers in zinc-deficient diabetic patients on hemodialysis: A randomized, double-blind, placebo-controlled trial[J]. Biol Trace Elem Res, 2022, 200(1):76-83. |
[40] | Lu Y, Liu Y, Li H, et al. Effect and mechanisms of zinc supplementation in protecting against diabetic cardiomyopathy in a rat model of type 2 diabetes[J]. Bosn J Basic Med Sci, 2015, 15(1):14-20. |
[41] |
Ranasinghe P, Wathurapatha WS, Galappatthy P, et al. Zinc supplementation in prediabetes: A randomized double-blind placebo-controlled clinical trial[J]. J Diabetes, 2018, 10(5):386-397.
doi: 10.1111/1753-0407.12621 pmid: 29072815 |
[42] |
Liu F, Ma F, Kong G, et al. Zinc supplementation alleviates diabetic peripheral neuropathy by inhibiting oxidative stress and upregulating metallothionein in peripheral nerves of diabetic rats[J]. Biol Trace Elem Res, 2014, 158(2):211-218.
doi: 10.1007/s12011-014-9923-9 pmid: 24615552 |
[43] |
Olechnowicz J, Tinkov A, Skalny A, et al. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism[J]. J Physiol Sci, 2018, 68(1):19-31.
doi: 10.1007/s12576-017-0571-7 pmid: 28965330 |
[1] | 马剑楠, 陶杰, 桑大森, 吴寿岭, 张旗. 尿转铁蛋白与2型糖尿病人群新发心血管疾病的关系[J]. 临床荟萃, 2024, 39(8): 700-705. |
[2] | 熊璐, 郭莲. 2型糖尿病患者25(OH)D和SUA/SCr与合并非酒精性脂肪肝的相关性[J]. 临床荟萃, 2024, 39(8): 706-711. |
[3] | 岳江红, 王恒, 蔡钢, 张选明, 彭曦. 索格列净治疗2型糖尿病疗效和安全性的meta分析[J]. 临床荟萃, 2024, 39(7): 581-592. |
[4] | 延天美, 吴亚楠, 刘月影, 魏立民. 甘油三酯葡萄糖指数联合肥胖指标与糖尿病视网膜病变的相关性[J]. 临床荟萃, 2024, 39(7): 612-619. |
[5] | 杜斯娜, 李伟, 林雅静, 孙建国, 毛毛, 陈坚伟, 孙丹波, 毛玉山. 2型糖尿病胰岛素泵强化治疗后胰岛素剂量谱的分析及应用[J]. 临床荟萃, 2024, 39(7): 620-624. |
[6] | 高姊璇, 刘建凤. 成人糖尿病分型及应用研究进展[J]. 临床荟萃, 2024, 39(7): 650-653. |
[7] | 王翔, 林仿, 励丽, 孙杰辉. 血清血管生成素样蛋白2与2型糖尿病性视网膜病变的关系[J]. 临床荟萃, 2024, 39(6): 501-505. |
[8] | 孙辉, 刘海英, 任俊豪, 李锦霞. 欧洲人群体质指数与2型糖尿病因果关系的双向孟德尔随机化研究[J]. 临床荟萃, 2024, 39(4): 325-331. |
[9] | 王春杰, 谢静, 韩雪, 吴丹, 陈建华. 个体化血液透析对老年糖尿病肾病患者透析并发症的影响[J]. 临床荟萃, 2024, 39(4): 332-336. |
[10] | 王淑亮, 苏永峰. 肠道菌群在2型糖尿病中的研究进展[J]. 临床荟萃, 2024, 39(3): 274-278. |
[11] | 尹大鹏, 郭志新. 自噬在糖尿病认知功能障碍中的研究进展[J]. 临床荟萃, 2024, 39(3): 279-283. |
[12] | 吕莎莎, 宋金兰, 石健. m.3243A>G突变相关线粒体糖尿病1例并文献复习[J]. 临床荟萃, 2024, 39(2): 160-163. |
[13] | 张佳楠, 孙琳琳, 詹潇燕, 李冰. 血清维生素B12与老年2型糖尿病轻度认知功能障碍的关系[J]. 临床荟萃, 2024, 39(1): 34-37. |
[14] | 位增, 曹灵, 佘敦敏, 刘彦, 王艳, 张真稳. 54例2型糖尿病患者合并新型冠状病毒感染的死亡原因分析[J]. 临床荟萃, 2023, 38(9): 806-812. |
[15] | 张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||