[1] |
Nocturne G, Virone A, Ng WF, et al. Rheumatoid factor and disease activity are independent predictors of lymphoma in primary Sjögren's syndrome[J]. Arthritis Rheumatol, 2016, 68(4):977-985.
|
[2] |
中华医学会风湿病学分会. 干燥综合征诊断及治疗指南[J]. 中华风湿病学杂志, 2010, 14(11):766-768.
|
[3] |
Greenwell-Wild T, Moutsopoulos NM, Gliozzi M, et al. Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: Macrophage harbingers of disease severity[J]. Arthritis Rheum, 2011, 63(10):3103-3115.
|
[4] |
Horvath S, Nazmul-Hossain AN, Pollard RP, et al. Systems analysis of primary Sjögren's syndrome pathogenesis in salivary glands identifies shared pathways in human and a mouse model[J]. Arthritis Res Ther, 2012, 14(6):R238.
|
[5] |
Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6):882-883.
doi: 10.1093/bioinformatics/bts034
pmid: 22257669
|
[6] |
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7):e47.
|
[7] |
Yu G, Wang LG, Han Y, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.
doi: 10.1089/omi.2011.0118
pmid: 22455463
|
[8] |
von Mering C, Huynen M, Jaeggi D, et al. STRING: A database of predicted functional associations between proteins[J]. Nucleic Acids Res, 2003, 31(1):258-261.
doi: 10.1093/nar/gkg034
pmid: 12519996
|
[9] |
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.
doi: 10.1101/gr.1239303
pmid: 14597658
|
[10] |
Chin CH, Chen SH, Wu HH, et al. CytoHubba: Identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8:S11.
|
[11] |
Kang HI, Fei HM, Saito I, et al. Comparison of HLA class II genes in Caucasoid, Chinese, and Japanese patients with primary Sjögren's syndrome[J]. J Immunol, 1993, 150:3615-3623.
pmid: 8468491
|
[12] |
Ishimaru N, Arakaki R, Yoshida S, et al. Expression of the retinoblastoma protein RbAp48 in exocrine glands leads to Sjögren's syndrome-like autoimmune exocrinopathy[J]. J Exp Med, 2008, 205(12):2915-2927.
|
[13] |
Saito I, Servenius B, Compton T, et al. Detection of epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren's syndrome[J]. J Exp Med, 1989, 169(6):2191-2198.
doi: 10.1084/jem.169.6.2191
pmid: 2543732
|
[14] |
Moriyama M, Hayashida JN, Toyoshima T, et al. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjögren's syndrome[J]. Clin Exp Immunol, 2012, 169(1):17-26.
doi: 10.1111/j.1365-2249.2012.04587.x
pmid: 22670774
|
[15] |
McArthur C, Wang Y, Veno P, et al. Intracellular trafficking and surface expression of SS-A (Ro), SS-B (La), poly(ADP-ribose) polymerase and alpha-fodrin autoantigens during apoptosis in human salivary gland cells induced by tumour necrosis factor-alpha[J]. Arch Oral Biol, 2002, 47(6):443-448.
doi: 10.1016/s0003-9969(02)00025-0
pmid: 12102760
|
[16] |
Naito Y, Matsumoto I, Wakamatsu E, et al. Altered peptide ligands regulate muscarinic acetylcholine receptor reactive T cells of patients with Sjögren's syndrome[J]. Ann Rheum Dis, 2006, 65(2):269-271.
pmid: 16410534
|
[17] |
Kong L, Ogawa N, Nakabayashi T, et al. Fas and fas ligand expression in the salivary glands of patients with primary Sjögren's syndrome[J]. Arthritis Rheum, 1997, 40(1):87-97.
|
[18] |
Nakamura H, Koji T, Tominaga M, et al. Apoptosis in labial salivary glands from Sjögren's syndrome (SS) patients: Comparison with human T lymphotropic virus-I (HTLV-I)-seronegative and -seropositive SS patients[J]. Clin Exp Immunol, 1998, 114(1):106-112.
pmid: 9764611
|
[19] |
Nakamura H, Kawakami A, Izumi M, et al. Detection of the soluble form of Fas ligand (sFasL) and sFas in the saliva from patients with Sjögren's syndrome[J]. Clin Exp Rheumatol, 2005, 23(6):915.
pmid: 16396719
|
[20] |
Tsubota K, Saito I, Miyasaka N. Granzyme A and perforin expressed in the lacrimal glands of patients with Sjögren's syndrome[J]. Am J Ophthalmol, 1994, 117(1):120-121.
pmid: 7904795
|
[21] |
Fujihara T, Fujita H, Tsubota K, et al. Preferential localization of CD8+ alpha E beta 7+ T cells around acinar epithelial cells with apoptosis in patients with Sjögren's syndrome[J]. J Immunol, 1999, 163(4):2226-2235.
pmid: 10438965
|
[22] |
Carsons SE, Vivino FB, Parke A, et al. Treatment guidelines for rheumatologic manifestations of Sjögren's syndrome: Use of biologic agents, management of fatigue, and inflammatory musculoskeletal Pain[J]. Arthritis Care Res (Hoboken), 2017, 69(4):517-527.
doi: 10.1002/acr.22968
pmid: 27390247
|
[23] |
Fensterl V, Sen GC. Interferon-induced Ifit proteins: Their role in viral pathogenesis[J]. J Virol, 2015, 89(5):2462-2468.
doi: 10.1128/JVI.02744-14
pmid: 25428874
|
[24] |
Jiang H, Tsang L, Wang H, et al. IFI44L as a forward regulator enhancing host antituberculosis responses[J]. J Immunol Res, 2021, 2021:5599408.
|
[25] |
Haller O, Kochs G. Human MxA protein: An interferon-induced dynamin-like GTPase with broad antiviral activity[J]. J Interferon Cytokine Res, 2011, 31(1):79-87.
|
[26] |
Imgenberg-Kreuz J, Sandling JK, Almlöf JC, et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren's syndrome reveals regulatory effects at interferon-induced genes[J]. Ann Rheum Dis, 2016, 75(11):2029-2036.
doi: 10.1136/annrheumdis-2015-208659
pmid: 26857698
|
[27] |
Bodewes ILA, Versnel MA. Interferon activation in primary Sjögren's syndrome: Recent insights and future perspective as novel treatment target[J]. Expert Rev Clin Immunol, 2018, 14(10):817-829.
|
[28] |
Jhamnani RD, Rosenzweig SD. An update on gain-of-function mutations in primary immunodeficiency diseases[J]. Curr Opin Allergy Clin Immunol, 2017, 17(6):391-397.
|
[29] |
Sahoo SS, Pastor VB, Goodings C, et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes[J]. Nat Med, 2021, 27(10):1806-1817.
doi: 10.1038/s41591-021-01511-6
pmid: 34621053
|
[30] |
Allenspach EJ, Soveg F, Finn LS, et al. Germline SAMD9L truncation variants trigger global translational repression[J]. J Exp Med, 2021, 218(5):e20201195.
|
[31] |
Wedepohl S, Beceren-Braun F, Riese S, et al. L-selectin--a dynamic regulator of leukocyte migration[J]. Eur J Cell Biol, 2012, 91(4):257-264.
doi: 10.1016/j.ejcb.2011.02.007
pmid: 21546114
|
[32] |
Sarraj B, Ludányi K, Glant TT, et al. Expression of CD44 and L-selectin in the innate immune system is required for severe joint inflammation in the proteoglycan-induced murine model of rheumatoid arthritis[J]. J Immunol, 2006, 177(3):1932-1940.
pmid: 16849507
|
[33] |
Kabeerdoss J, Sandhya P, Mandal SK, et al. High salivary soluble L-selectin and interleukin-7 levels in Asian Indian patients with primary Sjögren's syndrome[J]. Clin Rheumatol, 2016, 35(12):3063-3067.
pmid: 27620619
|
[34] |
Mikulowska-Mennis A, Xu B, Berberian JM, et al. Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin/l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways[J]. Am J Pathol, 2001, 159(2):671-681.
pmid: 11485925
|