[1] |
Itolikar S, Nadkar MY. H1N1 revisited after six years: Then and now[J]. J Assoc Physicians India, 2015, 63:41-43.
pmid: 26591169
|
[2] |
Webster RG, Govorkova EA. Continuing challenges in influenza[J]. Ann N Y Acad Sci, 2014, 1323(1):115-39.
doi: 10.1111/nyas.12462
URL
|
[3] |
Kondrich J, Rosenthal M. Influenza in children[J]. Curr Opin Pediatr, 2017, 29(3):297-302.
doi: 10.1097/MOP.0000000000000495
URL
|
[4] |
Committee On Infectious Diseases. Recommendations for prevention and control of influenza in children, 2019-2020[J]. Pediatrics, 2019, 144(4):e20192478.
doi: 10.1542/peds.2019-2478
URL
|
[5] |
Shim JM, Kim J, Tenson T, et al. Influenza virus infection, interferon response, viral counter-response, and apoptosis[J]. Viruses, 2017, 9(8):223.
doi: 10.3390/v9080223
URL
|
[6] |
Hou F, Sun L, Zheng H, et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response[J]. Cell, 2011, 146(3):448-461.
doi: 10.1016/j.cell.2011.06.041
URL
|
[7] |
Yoshizumi T, Ichinohe T, Sasaki O, et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity[J]. Nat Commun, 2014, 5:4713.
doi: 10.1038/ncomms5713
pmid: 25140902
|
[8] |
Wang R, Zhu Y, Lin X, et al. Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production[J]. Autophagy, 2019, 15(7):1163-1181.
doi: 10.1080/15548627.2019.1580089
URL
|
[9] |
Xu F, Song H, An B, et al. NF-κB-dependent IFIT3 induction by HBx promotes Hepatitis B virus replication[J]. Front Microbiol, 2019, 10:2382.
doi: 10.3389/fmicb.2019.02382
URL
|
[10] |
Yang Y, Zhou Y, Hou J, et al. Hepatic IFIT3 predicts interferon-α therapeutic response in patients of hepatocellular carcinoma[J]. Hepatology, 2017, 66(1):152-166.
doi: 10.1002/hep.v66.1
URL
|
[11] |
Li Y, Wen Z, Zhou H, et al. Porcine interferon-induced protein with tetratricopeptide repeats 3, poIFIT3, inhibits swine influenza virus replication and potentiates IFN-β production[J]. Dev Comp Immunol, 2015, 50(1):49-57.
doi: 10.1016/j.dci.2014.10.008
URL
|
[12] |
Lindenmann J. Resistance of mice to mouse-adapted influenza A virus[J]. Virology, 1962, 16:203-204.
doi: 10.1016/0042-6822(62)90297-0
URL
|
[13] |
Jung HE, Oh JE, Lee HK. Cell-penetrating Mx1 enhances anti-viral resistance against mucosal influenza viral infection[J]. Viruses, 2019, 11(2):109.
doi: 10.3390/v11020109
URL
|
[14] |
Lohöfener J, Steinke N, Kay-Fedorov P, et al. The activation mechanism of 2'-5'-oligoadenylate synthetase gives new insights into OAS/cGAS triggers of innate immunity[J]. Structure, 2015, 23(5):851-862.
doi: S0969-2126(15)00090-8
pmid: 25892109
|
[15] |
Li Y, Banerjee S, Wang Y, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses[J]. Proc Natl Acad Sci U S A, 2016, 113(8):2241-2246.
doi: 10.1073/pnas.1519657113
URL
|
[16] |
Sadler AJ, Williams BR. Interferon-inducible antiviral effectors[J]. Nat Rev Immunol, 2008, 8:559-568.
doi: 10.1038/nri2314
URL
|
[17] |
Mihm U, Ackermann O, Welsch C, et al. Clinical relevance of the 2'-5'-oligoadenylate synthetase/RNase L system for treatment response in chronic hepatitis C[J]. J Hepatol, 2009, 50:49-58.
doi: 10.1016/j.jhep.2008.08.024
URL
|
[18] |
Liao X, Xie H, Li S, et al. 2', 5'-oligoadenylate synthetase 2 (OAS2) inhibits Zika virus replication through activation of type Ⅰ IFN signaling pathway[J]. Viruses, 2020, 12(4):418.
doi: 10.3390/v12040418
URL
|
[19] |
Tang BM, Shojaei M, Parnell GP, et al. A novel immune biomarker IFI27 discriminates between influenza and bacteria in patients with suspected respiratory infection[J]. Eur Respir J, 2017, 49(6):1602098.
doi: 10.1183/13993003.02098-2016
URL
|