Clinical Focus ›› 2021, Vol. 36 ›› Issue (10): 874-879.doi: 10.3969/j.issn.1004-583X.2021.10.002
Previous Articles Next Articles
Received:
2021-06-29
Online:
2021-10-20
Published:
2021-11-10
Contact:
Zhao Mingfeng
E-mail:mingfengzhao@sina.com
CLC Number:
Lu Wenyi, Zhao Mingfeng. The standard treatment of acute lymphoblastic leukemia[J]. Clinical Focus, 2021, 36(10): 874-879.
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.10.002
[1] | NCCN clinical practice guidelines in oncology acute lymphoblastic leukemia. Version 1.2020[R/OL]. [2020-01-15]. |
[2] |
Kruse A, Abdel-Azim N, Kim HN, et al. Minimal residual disease detection in acute lymphoblastic leukemia[J]. Int J Mol Sci, 2020,21(3):1054.
doi: 10.3390/ijms21031054 URL |
[3] |
Short NJ, Jabbour E. Minimal residual disease in acute lymphoblastic leukemia: How to recognize and treat it[J]. Curr Oncol Rep, 2017,19(1):6.
doi: 10.1007/s11912-017-0565-x URL |
[4] | Bassan R, Intermesoli T, Scattolin A, et al. Minimal residual disease assessment and risk-based therapy in acute lymphoblastic leukemia[J]. Clin Lymphoma Myeloma Leuk, 2017,17S:S2-S9. |
[5] |
Zhao XS, Liu YR, Xu LP, et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts[J]. Am J Hematol, 2019,94(5):512-521.
doi: 10.1002/ajh.v94.5 URL |
[6] |
Raff T, Gokbuget N, Luschen S, et al. Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: Data from the GMALL 06/99 and 07/03 trials[J]. Blood, 2007,109(3):910-915.
doi: 10.1182/blood-2006-07-037093 URL |
[7] | 秘营昌. 成人急性淋巴细胞白血病的规范化诊断及治疗[J]. 临床血液学杂志, 2012,25(3):1004-2806. |
[8] | 中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性淋巴细胞白血病诊断与治疗指南(2016年版)[J]. 中华血液学杂志, 2016,37(10):837-845. |
[9] |
Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias[J]. N Engl J Med, 2013,369(19):1783-1796.
doi: 10.1056/NEJMoa1306494 URL |
[10] |
Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: Long-term follow-up of a single-centre, phase 2 study[J]. Lancet Haematol, 2018,5(12):e618-e627.
doi: 10.1016/S2352-3026(18)30176-5 URL |
[11] |
Richards S, Pui CH, Gayon P, et al. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2013,60(2):185-195.
doi: 10.1002/pbc.24228 pmid: 22693038 |
[12] |
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018,378(5):439-448.
doi: 10.1056/NEJMoa1709866 URL |
[13] | Pasquini M, Hu Z, Zhang Y, et al. Real world experience of tisagenlecleucel chimeric antigen receptor (CAR) T-Cells targeting CD19 in patients with acute lymphoblastic leukemia (ALL) and diffuse large B-Cell lymphoma (DLBCL) using the Center for International Blood and Marrow Transplant Research (CIBMTR) cellular therapy (CT) Registry[J]. Clin Lymphoma Myeloma Leuk, 2019,19(Suppl 1):S267. |
[14] |
He X, Xiao X, Li Q, et al. Anti-CD19 CAR-T as a feasible and safe treatment against central nervous system leukemia after intrathecal chemotherapy in adults with relapsed or refractory B-ALL[J]. Leukemia, 2019,33(8):2102-2104.
doi: 10.1038/s41375-019-0437-5 URL |
[15] |
Lu W, Wei Y, Cao Y, et al. CD19 CAR-T cell treatment conferred sustained remission in B-ALL patients with minimal residual disease[J]. Cancer Immunol Immunother, 2021,70(12):3501-3511.
doi: 10.1007/s00262-021-02941-4 URL |
[16] |
Xiao X, He X, Li Q, et al. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: A case report[J]. Clin Cancer Res, 2019,25(1):29-34.
doi: 10.1158/1078-0432.CCR-18-1379 pmid: 30322878 |
[17] |
Wan X, Chen YH, Zhang Y. Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-cell therapy[J]. J Immunother, 2018,41(9):406-410.
doi: 10.1097/CJI.0000000000000243 URL |
[18] |
Chevallier P, Pigneux A, Robillard N, et al. Rituximab for the treatment of adult relapsed/refractory CD20 positive B-ALL patients: A pilot series[J]. Leuk Res, 2012,36(3):311-315.
doi: 10.1016/j.leukres.2011.11.010 URL |
[19] |
Thomas DA, O'Brien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia[J]. J Clin Oncol, 2010,28(24):3880-3889.
doi: 10.1200/JCO.2009.26.9456 URL |
[20] |
Jabbour E, Richard-Carpentier G, Sasaki Y, et al. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: A single-arm, phase 2 trial[J]. Lancet Haematol, 2020,7(7):e523-e533.
doi: 10.1016/S2352-3026(20)30144-7 pmid: 32589978 |
[21] |
Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia[J]. N Engl J Med, 2017,376(9):836-847.
doi: 10.1056/NEJMoa1609783 URL |
[22] |
Martinelli G, Boissel N, Chevallier P, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: Results from a phase Ⅱ, single-arm, multicenter study[J]. J Clin Oncol, 2017,35(16):1795-1802.
doi: 10.1200/JCO.2016.69.3531 pmid: 28355115 |
[23] |
Topp MS, Gokbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia[J]. J Clin Oncol, 2014,32(36):4134-4140.
doi: 10.1200/JCO.2014.56.3247 pmid: 25385737 |
[24] |
Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment[J]. Blood, 2015,126(24):2578-2584.
doi: 10.1182/blood-2015-06-649111 pmid: 26480933 |
[25] |
Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia[J]. Blood, 2018,131(14):1522-1531.
doi: 10.1182/blood-2017-08-798322 URL |
[26] |
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia[J]. N Engl J Med, 2016,375(8):740-753.
doi: 10.1056/NEJMoa1509277 URL |
[27] |
Naik J, Themeli M, de Jong-Korlaar R, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia[J]. Haematologica, 2019,104(3):e100-e103.
doi: 10.3324/haematol.2018.192757 URL |
[28] |
Ofran Y, Ringelstein-Harlev S, Slouzkey I, et al. Daratumumab for eradication of minimal residual disease in high-risk advanced relapse of T-cell/CD19/CD22-negative acute lymphoblastic leukemia[J]. Leukemia, 2020,34(1):293-295.
doi: 10.1038/s41375-019-0548-z URL |
[29] |
Zhang Y, Xue S, Liu F, et al. Daratumumab for quick and sustained remission in post-transplant relapsed/refractory acute lymphoblastic leukemia[J]. Leuk Res, 2020; 91:106332.
doi: 10.1016/j.leukres.2020.106332 URL |
[30] |
Ganzel C, Kharit M, Duksin C, et al. Daratumumab for relapsed/refractory Philadelphia-positive acute lymphoblastic leukemia[J]. Haematologica, 2018,103(10):e489-e490.
doi: 10.3324/haematol.2018.197640 URL |
[31] |
Chonghaile TN, Roderick JE, Glenfield C, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199[J]. Cancer Discov, 2014,4(9):1074-1087.
doi: 10.1158/2159-8290.CD-14-0353 pmid: 24994123 |
[32] | Leonard JT, Rowley JS, Eide CA, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Sci Transl Med, 2016, 8(354):354ra114. |
[33] |
Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma[J]. Cancer Discov, 2021,11(6):1440-1453.
doi: 10.1158/2159-8290.CD-20-1465 URL |
[34] |
Jain N, Stevenson KE, Winer ES, et al. A multicenter phase Ⅰ study combining venetoclax with mini-hyper-CVD in older adults with untreated and relapsed/refractory acute lymphoblastic leukemia[J]. Blood, 2019,134(Suppl 1):3867.
doi: 10.1182/blood-2019-129988 URL |
[35] | Horton TM, Whitlock JA, Lu X, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: A report from the Children's Oncology Group[J]. Br J Haematol, 2019,186(2):274-285. |
[36] |
Bertaina A, Vinti L, Strocchio L, et al. The combination of bortezomib with chemotherapy to treat relapsed/refractory acute lymphoblastic leukaemia of childhood[J]. Br J Haematol, 2017,176(4):629-636.
doi: 10.1111/bjh.2017.176.issue-4 URL |
[37] |
Hasegawa D, Yoshimoto Y, Kimura S, et al. Bortezomib-containing therapy in Japanese children with relapsed acute lymphoblastic leukemia[J]. Int J Hematol, 2019,110(5):627-634.
doi: 10.1007/s12185-019-02714-x pmid: 31401767 |
[38] |
Burke MJ, Ziegler DS, Sirvent F, et al. Phase 1b study of carfilzomib in combination with induction chemotherapy in children with relapsed or refractory acute lymphoblastic leukemia (ALL)[J]. Blood, 2019,134(Suppl 1):3873.
doi: 10.1182/blood-2019-127350 URL |
[39] | Fisch SC, Jonas BA, Tuscano J, et al. Phase I study of escalating doses of carfilzomib with Hyper-CVAD in patients with newly diagnosed acute lymphoblastic leukemia[J]. Am J Hematol, 2019,134(Suppl 1):3884. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||