Clinical Focus ›› 2024, Vol. 39 ›› Issue (7): 668-672.doi: 10.3969/j.issn.1004-583X.2024.07.016
Received:
2023-11-22
Online:
2024-07-20
Published:
2024-08-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.07.016
[1] | Perlman S. Another decade, another coronavirus[J]. N Engl J Med, 2020, 382(8):760-762. |
[2] |
Brant AC, Tian W, Majerciak V, et al. SARS-CoV-2: From its discovery to genome structure, transcription, and replication[J]. Cell Biosci, 2021, 11(1):136.
doi: 10.1186/s13578-021-00643-z pmid: 34281608 |
[3] | Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novelcoronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506. |
[4] |
Martin MA, VanInsberghe D, Koelle K. Insights from SARS-CoV-2 sequences[J]. Science, 2021, 371(6528):466-467.
doi: 10.1126/science.abf3995 pmid: 33510015 |
[5] |
Fernandes Q, Inchakalody VP, Merhi M, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines[J]. Ann Med, 2022, 54(1):524-540.
doi: 10.1080/07853890.2022.2031274 pmid: 35132910 |
[6] | Alkhatib M, Svicher V, Salpini R, et al. SARS-CoV-2 variants and their relevant mutational profiles: Update summer 2021[J]. Microbiol Spectr, 2021 9(3):e109621. |
[7] |
Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18(11):671-688.
doi: 10.1038/s41577-018-0061-z pmid: 30209347 |
[8] | Sahoo D, Katkar GD, Khandelwal S, et al. AI-guided discovery of the invariant hostresponse to viral pandemics[J]. bioRxiv, 2021, 68:103390. |
[9] | Bjorkstrom NK, Strunz B, Ljunggren HG. Natural killer cells in antiviral immunity[J]. Nat Rev Immunol, 2022, 22(2):112-123. |
[10] | Sheppard S, Santosa EK, Lau CM, et al. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function[J]. Cell Rep, 2021, 35(9):109210. |
[11] |
Abel AM, Yang C, Thakar MS, et al. Natural killer cells: Development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9:1869.
doi: 10.3389/fimmu.2018.01869 pmid: 30150991 |
[12] | Prager I, Liesche C, van Ooijen H, et al. NK cells switch from granzyme B to deathreceptor-mediated cytotoxicity during serial killing[J]. J Exp Med, 2019, 216(9):2113-2127. |
[13] |
Gwalani LA, Orange JS. Single degranulations in NK cells can mediate target cell killing[J]. J Immunol, 2018, 200(9):3231-3243.
doi: 10.4049/jimmunol.1701500 pmid: 29592963 |
[14] | Sharma A, Ahmad FI, Lal SK. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention[J]. Viruses, 2021, 13(2):202. |
[15] | Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8):727-733. |
[16] | Sharma A, Lal SK. Is tetherin a true antiviral: The influenza a virus controversy[J]. Rev Med Virol, 2019, 29(3): e2036. |
[17] |
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2):281-292.
doi: S0092-8674(20)30262-2 pmid: 32155444 |
[18] |
Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19[J]. Clin Infect Dis, 2020, 71(6):1400-1409.
doi: 10.1093/cid/ciaa410 pmid: 32270184 |
[19] | Pace M, Ogbe A, Hurst J, et al. Impact of antiretroviral therapy in primary HIV infection on natural killer cell function and the association with viral rebound and HIV DNAfollowing treatment interruption[J]. Front Immunol, 2022, 13:878743. |
[20] | Cui X, Zhao Z, Zhang T, et al. A systematic review and meta-analysis of children with coronavirus disease 2019 (COVID-19)[J]. J Med Virol, 2021, 93(2):1057-1069. |
[21] |
Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer[J]. Nat Rev Immunol, 2012, 12(4):239-252.
doi: 10.1038/nri3174 pmid: 22437937 |
[22] | Deng X, Terunuma H, Nieda M. Exploring the utility of NK cells in COVID-19[J]. Biomedicines, 2022, 10(5) :1002. |
[23] |
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study[J]. Lancet, 2020, 395(10223):507-513.
doi: S0140-6736(20)30211-7 pmid: 32007143 |
[24] |
Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy[J]. JAMA, 2020, 323(16):1574-1581.
doi: 10.1001/jama.2020.5394 pmid: 32250385 |
[25] |
Distler J, Gyorfi AH, Ramanujam M, et al. Shared and distinct mechanisms of fibrosis[J]. Nat Rev Rheumatol, 2019, 15(12):705-730.
doi: 10.1038/s41584-019-0322-7 pmid: 31712723 |
[26] |
Grabarz F, Aguiar CF, Correa-Costa M, et al. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis[J]. Inflammopharmacology, 2018, 26(2):491-504.
doi: 10.1007/s10787-017-0383-7 pmid: 28779430 |
[27] |
Wang L, Wang Y, Quan J. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy[J]. Mol Med, 2020, 26(1):81.
doi: 10.1186/s10020-020-00207-w pmid: 32873229 |
[28] | Qi F, Qian S, Zhang S, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses[J]. Biochem Biophys Res Commun, 2020, 526(1):135-140. |
[29] | Zhao Y, Zhao Z, Wang Y, et al. Single-Cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2[J]. Am J Respir Crit Care Med, 2020, 202(5):756-759. |
[30] |
Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission[J]. Gastroenterology, 2020, 158(6):1518-1519.
doi: S0016-5085(20)30281-X pmid: 32142785 |
[31] |
Cholankeril G, Podboy A, Aivaliotis VI, et al. High prevalence of concurrent gastrointestinal manifestations in patients with severe acute respiratory syndrome coronavirus 2: Early experience from California[J]. Gastroenterology, 2020, 159(2):775-777.
doi: S0016-5085(20)30471-6 pmid: 32283101 |
[32] |
Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes[J]. Science, 2020, 369(6499):50-54.
doi: 10.1126/science.abc1669 pmid: 32358202 |
[33] | Saeed NK, Al-Beltagi M, Bediwy AS, et al. Gut microbiota in various childhood disorders: Implication and indications[J]. World J Gastroenterol, 2022, 28(18):1875-1901. |
[34] | Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117(20):10970-10975. |
[35] |
Bavishi C, Bonow RO, Trivedi V, et al. Special article - Acute myocardial injury in patients hospitalized with COVID-19 infection: A review[J]. Prog Cardiovasc Dis, 2020, 63(5):682-689.
doi: 10.1016/j.pcad.2020.05.013 pmid: 32512122 |
[36] | Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: A case report and insights[J]. Infection, 2020, 48(5):773-777. |
[37] | 杨逸成, 熊长明. 新型冠状病毒感染与心血管疾病和心肌损伤的研究进展[J]. 实用医学杂志, 2020, 36(12):1547-1551. |
[38] | 高宇, 刘静, 杨小明. 新型冠状病毒感染对心血管系统的影响[J]. 现代预防医学, 2021, 48(14):2673-2676. |
[39] |
Xue M, Xie J, Liu L, et al. Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: A prospective observational study[J]. J Transl Med, 2019, 17(1):57.
doi: 10.1186/s12967-019-1811-9 pmid: 30813927 |
[40] | Xue M, Tang Y, Liu X, et al. Circulating Th1 and Th2 subset accumulation kinetics in septic patients with distinct infection sites: Pulmonary versus nonpulmonary[J]. Mediators Inflamm, 2020, 2020:8032806. |
[41] | Wang H, Cui W, Qiao L, et al. Overexpression of miR-451a in sepsis and septic shock patients is involved in the regulation of sepsis-associated cardiac dysfunction and inflammation[J]. Genet Mol Biol, 2020, 43(4):e20200009. |
[42] | Yu D, Peng X, Li P. The correlation between Jun N-terminal kinase pathway-associated phosphatase and Th1 cell or Th17 cell in sepsis and their potential roles in clinical sepsis management[J]. Ir J Med Sci, 2021, 190(3):1173-1181. |
[43] |
Dong C. Cytokine regulation and function in T cells[J]. Annu Rev Immunol, 2021, 39:51-76.
doi: 10.1146/annurev-immunol-061020-053702 pmid: 33428453 |
[44] | Li W, Dong M, Chu L, et al. MicroRNA-451 relieves inflammation in cerebral ischemia-reperfusion via the Toll-like receptor 4/MyD88/NF-κB signaling pathway[J]. Molecular Medicine Reports, 2019, 20(4) :3043-3054. |
[45] | Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets[J]. Int J Mol Sci, 2019, 20(21):5376. |
[46] |
Qiu P, Liu Y, Zhang J. Review: The role and mechanisms of macrophage autophagy in sepsis[J]. Inflammation, 2019, 42(1):6-19.
doi: 10.1007/s10753-018-0890-8 pmid: 30194660 |
[47] | Tan ZC, Fu LH, Wang DD, et al. Cardiac manifestations of patients with COVID-19 pneumonia and related treatment recommendations[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2020, 48(6):434-438. |
[48] |
Wijaya RS, Read SA, Truong NR, et al. HBV vaccination and HBV infection induces HBV-specific natural killer cell memory[J]. Gut, 2021, 70(2):357-369.
doi: 10.1136/gutjnl-2019-319252 pmid: 32229546 |
[49] | Terren I, Orrantia A, Astarloa-Pando G, et al. Cytokine-induced memory-like NK cells: From the basics to clinical applications[J]. Front Immunol, 2022, 13:884648. |
[1] | Yu Jingyi, Si Yuanguo, Lan Cuixia, Xing Jiaxuan. Safety and efficacy of rivaroxaban in the treatment of discharged COVID-19 patients: A meta-analysis [J]. Clinical Focus, 2024, 39(6): 485-493. |
[2] | Zhi Bingdi, Liu Ying, Liu Ying, Zhang Fubo, Li Junfeng. SARS-CoV-2 infection combined with Listeria meningitis: A case report and literature review [J]. Clinical Focus, 2024, 39(4): 347-351. |
[3] | Wei Fang, Zhang Yu, Wang Qingqing, Zheng Guoqi. Clinical analysis of 11 cases of coronavirus disease-19 associated with acute pancreatitis: Case report [J]. Clinical Focus, 2024, 39(3): 239-243. |
[4] | Wei Zeng, Cao Ling, She Dunmin, Liu Yan, Wang Yan, Zhang Zhenwen. The causes of death in 54 patients with type 2 diabetes mellitus complicated with COVID-19 [J]. Clinical Focus, 2023, 38(9): 806-812. |
[5] | Huang Huayan, Lin Chunguang, Wu Changru, Chen Yongdong, Huang Huanmou. Clinical characteristics of patients infected with Omicron and Delta variants in novel coronavirus [J]. Clinical Focus, 2023, 38(7): 600-605. |
[6] | . [J]. Clinical Focus, 2023, 38(7): 638-646. |
[7] | Ni Yiyun, Liu Bin, Liang Qi, Li Xiaofeng. Values of IL-6 and CRP in predicting the severity of coronavirus disease 2019: A meta-analysis [J]. Clinical Focus, 2023, 38(6): 493-499. |
[8] | Zhou Zihan, Cui Wei. Effects of common cardiovascular drugs on the risk of COVID-19 infection and poor prognosis [J]. Clinical Focus, 2022, 37(10): 869-888. |
[9] | Hou Huiyu, Zhang Shaohua, Ma Xinxin, Zhang Jie, Wang Yazhen. Investigation and analysis of knowledge, attitude and practice of medical workers in public hospitals on the prevention & protection from COVID-19 [J]. Clinical Focus, 2022, 37(7): 631-634. |
[10] | Guo Ru, Liu Ruihong, Lin Xuefeng, Han Xuanmao, Zhang Zhu, Chen Ruiying. Correlation between cardiac troponin and D-dimer levels and mortality in COVID-19 critical illness patients: A meta analysis [J]. Clinical Focus, 2022, 37(4): 293-298. |
[11] | Huang Huayan, Lin Chunguang, Chen Yongdong, Zeng Qiyi, Wu Changru. Clinical characteristics of Delta variant of SARS-CoV-2 of shipmate [J]. Clinical Focus, 2022, 37(4): 311-314. |
[12] | Deng Kaibin, Han Liang, Niu Shaoqian, Wang Haiyan, Wang Yanbo, Fu Yang, Wang Qing, Zhan Yang, Fu Xianghua. Effect of optimized treatment approach on acute STEMI patients under the situation of prevention and control of COVID-19 [J]. Clinical Focus, 2021, 36(7): 595-599. |
[13] | XUE Yi-ming;LIN Li-xing;CHEN Jing;TAO Zhong-bin. Detection of common respiratory viruses and Mycoplasma pneumonia with respiratory infection investigation in Lanzhou [J]. Clinical Focus, 2012, 27(9): 751-754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||