临床荟萃 ›› 2021, Vol. 36 ›› Issue (5): 458-461.doi: 10.3969/j.issn.1004-583X.2021.05.014
孙伟a, 朱运辉a, 许佳敏a, 王羚a, 宋萍萍a, 张玉生a,b()
收稿日期:
2021-03-25
出版日期:
2021-05-20
发布日期:
2021-06-09
通讯作者:
张玉生
E-mail:757181750@qq.com
基金资助:
Received:
2021-03-25
Online:
2021-05-20
Published:
2021-06-09
摘要:
隐球菌是一种嗜神经性的机会性致病真菌,隐球菌性脑膜炎(cryptococcal meningitis, CM)是极为凶险的中枢神经系统感染性疾病,治疗困难,病死率高。本文从隐球菌侵入中枢神经系统、免疫应答机制及免疫治疗方面进行系统阐述。
中图分类号:
孙伟, 朱运辉, 许佳敏, 王羚, 宋萍萍, 张玉生. 隐球菌性脑膜炎的免疫学发病机制[J]. 临床荟萃, 2021, 36(5): 458-461.
[1] |
Maziarz EK, Perfect JR. Cryptococcosis[J]. Infect Dis Clin North Am, 2016, 30(1):179-206.
doi: 10.1016/j.idc.2015.10.006 URL |
[2] |
May RC, Stone NR, Wiesner DL, et al. Cryptococcus: From environmental saprophyte to global pathogen[J]. Nat Rev Microbiol, 2016, 14(2):106-117.
doi: 10.1038/nrmicro.2015.6 URL |
[3] | Williamson PR, Jarvis JN, Panackal AA, et al. Cryptococcal meningitis: Epidemiology, immunology, diagnosis and therapy[J]. Nat Rev Neurol, 2016, 13(1):13-24. |
[4] |
Shimizu H, Hara S, Nishioka H. Disseminated cryptococcosis with granuloma formation in idiopathic cd4 lymphocytopenia[J]. J Infect Chemother, 2020, 26(2):257-260.
doi: S1341-321X(19)30208-9 pmid: 31345742 |
[5] |
Zaragoza O. Basic principles of the virulence of cryptococcus[J]. Virulence, 2019, 10(1):490-501.
doi: 10.1080/21505594.2019.1614383 pmid: 31119976 |
[6] |
Coelho C, Casadevall A. Cryptococcal therapies and drug targets: The old, the new and the promising[J]. Cell Microbiol, 2016, 18(6):792-799.
doi: 10.1111/cmi.v18.6 URL |
[7] |
Franco-Paredes C, Womack T, Bohlmeyer T, et al. Management of cryptococcus gattii meningoencephalitis[J]. Lancet Infect Dis, 2015, 15(3):348-355.
doi: 10.1016/S1473-3099(14)70945-4 pmid: 25467646 |
[8] |
Anjum S, Williamson PR. Clinical aspects of immune damage in cryptococcosis[J]. Curr Fungal Infect Rep, 2019, 13(3):99-108.
doi: 10.1007/s12281-019-00345-7 URL |
[9] | Leopold Wager CM, Hole CR, Wozniak KL, et al. Cryptococcus and phagocytes: Complex interactions that influence disease outcome[J]. Front Microbiol, 2016, 7:105. |
[10] | Panackal AA, Williamson KC, van de Beek D, et al. Fighting the monster: Applying the host damage framework to human central nervous system infections[J]. mBio, 2016, 7(1):e01906-e01915. |
[11] |
Liu TB, Perlin DS, Xue C. Molecular mechanisms of cryptococcal meningitis[J]. Virulence, 2012, 3(2):173-181.
doi: 10.4161/viru.18685 URL |
[12] |
Klein RS, Hunter CA. Protective and pathological immunity during central nervous system infections[J]. Immunity, 2017, 46(6):891-909.
doi: 10.1016/j.immuni.2017.06.012 URL |
[13] |
Colombo AC, Rodrigues ML. Fungal colonization of the brain: Anatomopathological aspects of neurological cryptococcosis[J]. An Acad Bras Cienc, 2015, 87(2 Suppl):1293-1309.
doi: 10.1590/0001-3765201520140704 URL |
[14] |
Jong A, Wu CH, Shackleford GM, et al. Involvement of human cd44 during cryptococcus neoformans infection of brain microvascular endothelial cells[J]. Cell Microbiol, 2008, 10(6):1313-1326.
doi: 10.1111/j.1462-5822.2008.01128.x URL |
[15] |
Vu K, Eigenheer RA, Phinney BS, et al. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells[J]. Infect Immun, 2013, 81(9):3139-3147.
doi: 10.1128/IAI.00554-13 URL |
[16] |
Na Pombejra S, Salemi M, Phinney BS, et al. The metalloprotease, mpr1, engages annexina2 to promote the transcytosis of fungal cells across the blood-brain barrier[J]. Front Cell Infect Microbiol, 2017, 7:296.
doi: 10.3389/fcimb.2017.00296 URL |
[17] |
Charlier C, Chrétien F, Baudrimont M, et al. Capsule structure changes associated with cryptococcus neoformans crossing of the blood-brain barrier[J]. Am J Pathol, 2005, 166(2):421-432.
doi: 10.1016/S0002-9440(10)62265-1 URL |
[18] |
Posey JE, Harel T, Liu P, et al. Resolution of disease phenotypes resulting from multilocus genomic variation[J]. N Engl J Med, 2017, 376(1):21-31.
doi: 10.1056/NEJMoa1516767 URL |
[19] | Santiago-Tirado FH, Onken MD, Cooper JA, et al. Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen[J]. mBio, 2017, 8(1):e02183-e021816. |
[20] |
Casadevall A, Coelho C, Alanio A. Mechanisms of cryptococcus neoformans-mediated host damage[J]. Front Immunol, 2018, 9:855.
doi: 10.3389/fimmu.2018.00855 pmid: 29760698 |
[21] |
Rudman J, Evans RJ, Johnston SA. Are macrophages the heroes or villains during cryptococcosis?[J]. Fungal Genet Biol, 2019, 132:103261.
doi: S1087-1845(19)30204-X pmid: 31415906 |
[22] | Heung LJ. Innate immune responses to Cryptococcus[J]. J Fungi (Basel), 2017, 3(3):35. |
[23] | Mukaremera L, Nielsen K. Adaptive immunity to cryptococcus neoformans infections[J]. J Fungi (Basel), 2017, 3(4):64. |
[24] | Campuzano A, Wormley FL. Innate immunity against cryptococcus, from recognition to elimination[J]. J Fungi (Basel), 2018, 4(1):33. |
[25] |
Bojarczuk A, Miller KA, Hotham R, et al. Cryptococcus neoformans intracellular proliferation and capsule size determines early macrophage control of infection[J]. Sci Rep, 2016, 6:21489.
doi: 10.1038/srep21489 URL |
[26] | Fu MS, Drummond RA. The diverse roles of monocytes in cryptococcosis[J]. J Fungi (Basel), 2020, 6(3):111. |
[27] |
Hansakon A, Jeerawattanawart S, Pattanapanyasat K, et al. Il-25 receptor signaling modulates host defense against cryptococcus neoformans infection[J]. J Immunol, 2020, 205(3):674-685.
doi: 10.4049/jimmunol.2000073 pmid: 32561567 |
[28] |
LaRocque-de-Freitas IF, Rocha JDB, Nunes MP, et al. Involvement of the capsular galxm-induced il-17 cytokine in the control of cryptococcus neoformans infection[J]. Sci Rep, 2018, 8(1):16378.
doi: 10.1038/s41598-018-34649-4 pmid: 30401972 |
[29] |
Heung LJ. Monocytes and the host response to fungal pathogens[J]. Front Cell Infect Mi, 2020, 10:34.
doi: 10.3389/fcimb.2020.00034 pmid: 32117808 |
[30] |
Subramani A, Griggs P, Frantzen N, et al. Intracellular cryptococcus neoformans disrupts the transcriptome profile of m1-and m2-polarized host macrophages[J]. PLoS One, 2020, 15(8):e0233818.
doi: 10.1371/journal.pone.0233818 URL |
[31] |
Goldman DL, Khine H, Abadi J, et al. Serologic evidence for cryptococcus neoformans infection in early childhood[J]. Pediatrics, 2001, 107(5):E66.
doi: 10.1542/peds.107.5.e66 URL |
[32] |
Chen LC, Goldman DL, Doering TL, et al. Antibody response to cryptococcus neoformans proteins in rodents and humans[J]. Infect Immun, 1999, 67(5):2218-2224.
pmid: 10225877 |
[33] |
Browne SK, Burbelo PD, Chetchotisakd P, et al. Adult-onset immunodeficiency in thailand and taiwan[J]. N Engl J Med, 2012, 367(8):725-734.
doi: 10.1056/NEJMoa1111160 URL |
[34] |
Schulze B, Piehler D, Eschke M, et al. Cd4(+) foxp3(+) regulatory t cells suppress fatal t helper 2 cell immunity during pulmonary fungal infection[J]. Eur J Immunol, 2014, 44(12):3596-3604.
doi: 10.1002/eji.201444963 pmid: 25187063 |
[35] | Schulze B, Piehler D, Eschke M, et al. Therapeutic expansion of cd4+foxp3+ regulatory t cells limits allergic airway inflammation during pulmonary fungal infection[J]. Pathog Dis, 2016, 74(4):ftw020. |
[36] |
Wiesner DL, Smith KD, Kotov DI, et al. Regulatory t cell induction and retention in the lungs drives suppression of detrimental type 2 th cells during pulmonary cryptococcal infection[J]. J Immunol, 2016, 196(1):365-374.
doi: 10.4049/jimmunol.1501871 pmid: 26590316 |
[37] |
Arora S, Olszewski MA, Tsang TM, et al. Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with cryptococcus neoformans[J]. Infect Immun, 2011, 79(5):1915-1926.
doi: 10.1128/IAI.01270-10 URL |
[38] |
Jarvis JN, Meintjes G, Bicanic T, et al. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in hiv-associated cryptococcal meningitis[J]. PLoS Pathog, 2015, 11(4):e1004754.
doi: 10.1371/journal.ppat.1004754 URL |
[39] | Jarvis JN, Casazza JP, Stone HH, et al. The phenotype of the cryptococcus-specific cd4+ memory t-cell response is associated with disease severity and outcome in hiv-associated cryptococcal meningitis[J]. J Infecti Dis, 2013, 207(12):1817-1828. |
[40] | Pirofski LA, Casadevall A. The damage-response framework as a tool for the physician-scientist to understand the pathogenesis of infectious diseases[J]. J Infecti Dis, 2018, 218(suppl_1):S7-s11. |
[41] |
Panackal AA, Wuest SC, Lin YC, et al. Paradoxical immune responses in non-hiv cryptococcal meningitis[J]. PLoS Pathogens, 2015, 11(5):e1004884.
doi: 10.1371/journal.ppat.1004884 URL |
[42] |
Henao-Martínez AF, Chastain DB, Franco-Paredes C. Treatment of cryptococcosis in non-hiv immunocompromised patients[J]. Curr Opin Infect Dis, 2018, 31(4):278-285.
doi: 10.1097/QCO.0000000000000458 pmid: 29738314 |
[43] |
Wager CML, Hole CR, Campuzano A, et al. Ifn-gamma immune priming of macrophages in vivo induces prolonged stat1 binding and protection against cryptococcus neoformans[J]. PLoS Pathogens, 2018, 14(10):e1007358.
doi: 10.1371/journal.ppat.1007358 URL |
[44] |
Beardsley J, Wolbers M, Kibengo FM, et al. Adjunctive dexamethasone in hiv-associated cryptococcal meningitis[J]. N Engl J Med, 2016, 374(6):542-554.
doi: 10.1056/NEJMoa1509024 URL |
[45] |
Lane M, McBride J, Archer J. Steroid responsive late deterioration in cryptococcus neoformans variety gattii meningitis[J]. Neurology, 2004, 63(4):713-714.
doi: 10.1212/01.WNL.0000134677.29120.62 URL |
[46] |
Leopold Wager CM, Wormley FL. Is development of a vaccine against cryptococcus neoformans feasible?[J]. PLoS Pathogens, 2015, 11(6):e1004843.
doi: 10.1371/journal.ppat.1004843 URL |
[47] | He ZT. Macrophage-mediated innate immunity for the treatment of cryptococcal meningitis[J]. Aip Conf Proc, 2020, 2208. |
[48] |
Caballero Van Dyke MC, Wormley FL. A call to arms: Quest for a cryptococcal vaccine[J]. Trends Microbiol, 2018, 26(5):436-446.
doi: S0966-842X(17)30229-9 pmid: 29103990 |
[49] |
Leopold Wager CM, Hole CR, Campuzano A, et al. IFN-γ immune priming of macrophages in vivo induces prolonged stat1 binding and protection against cryptococcus neoformans[J]. PLoS Pathog, 2018, 14(10):e1007358.
doi: 10.1371/journal.ppat.1007358 URL |
[1] | 刘婉琦, 樊树芹, 庄瑞雪, 贺峰, 刘振川, 解忠祥. 成人水痘-带状疱疹病毒相关颅内感染5例临床分析[J]. 临床荟萃, 2024, 39(2): 149-154. |
[2] | 王瑶, 黄鹏如, 曾昭豪, 罗宏, 岑海媚, 罗彬, 张誉. 以步态不稳为首发症状的新型隐球菌性脑膜脑炎1例[J]. 临床荟萃, 2023, 38(3): 260-263. |
[3] | 汪露, 曾昭豪, 罗宏, 岑海媚, 张誉. 肥厚性硬脑膜炎2例并文献分析[J]. 临床荟萃, 2021, 36(7): 637-640. |
[4] | 齐雪姣a,卜晖a,邹月丽a,杨建凯b,赵银龙b,何俊瑛a. 难治性真菌性脑膜炎3例并文献复习[J]. 临床荟萃, 2019, 34(2): 154-157. |
[5] | 李淑敏,李垚,蔺建文,任彦微,宋其生,郝国华,王苏平. 结核性脑膜炎抗结核菌纯蛋白衍生物抗体与脑脊液细胞学的相关性[J]. 临床荟萃, 2018, 33(5): 402-404,408. |
[6] | 杨志国,张妮,杨保旺,李兴川,王静,王海东. 小儿化脓性脑膜炎并发惊厥的危险因素[J]. 临床荟萃, 2017, 32(7): 602-605. |
[7] | 周文,李莉娟,王文媛,许丽丽,张连生. 急性髓系白血病中树突状细胞疫苗的免疫治疗[J]. 临床荟萃, 2017, 32(6): 549-552. |
[8] | 许丽丽,李莉娟,周文,王文媛,张连生. 髓源性抑制细胞在肿瘤治疗中的相关研究及应用前景[J]. 临床荟萃, 2017, 32(6): 545-548. |
[9] | 刘 洋,李莉娟,马愔花,刘树梅,张连生. 骨髓增生异常综合征中树突状细胞的免疫异常与免疫治疗------现状与前景[J]. 临床荟萃, 2016, 31(5): 573-576,580. |
[10] | 马愔花, 李莉娟, 刘树梅, 刘洋, 张连生. 免疫治疗在多发性骨髓瘤中的研究进展[J]. 临床荟萃, 2016, 31(4): 447-450. |
[11] | 何萍,徐俊,丰涛,王运中,陶云珍,房锐颖,邵雪军,朱宏. 儿童中枢神经系统感染脑脊液主要病原菌的构成及耐药性的监测[J]. 临床荟萃, 2016, 31(10): 1121-1124. |
[12] | 尹光芝;苏慧勇;张国丽;杨磊;尹世明. 43例获得性免疫缺陷综合征合并隐球菌脑膜炎临床特点分析[J]. 临床荟萃, 2015, 30(4): 404-407. |
[13] | 杜彭;巩路. 新型隐球菌性脑膜炎12例临床分析[J]. 临床荟萃, 2015, 30(1): 86-88. |
[14] | 杨士斌;唐晓娜;陈源;张会丰. 以化脓性脑膜炎为首发表现的不完全川崎病1例[J]. 临床荟萃, 2014, 29(5): 559-559. |
[15] | 席学莉. 隐球菌病合并脑梗死1例[J]. 临床荟萃, 2014, 29(12): 1422-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||