临床荟萃 ›› 2024, Vol. 39 ›› Issue (12): 1141-1146.doi: 10.3969/j.issn.1004-583X.2024.12.015
收稿日期:
2024-09-24
出版日期:
2024-12-20
发布日期:
2025-01-10
通讯作者:
邬秀娣,Email:
Received:
2024-09-24
Online:
2024-12-20
Published:
2025-01-10
摘要:
免疫球蛋白A血管炎(immunoglobulin A vasculitis,IgAV)由含有IgA的免疫复合物在皮肤、肾脏和胃肠道的小血管壁中滞留引起。IgAV的发病机制尚未完全阐明,但近年来研究表明,中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)的过度形成可能在其病理过程中发挥重要作用。越来越多的证据表明,IgAV患者的外周血循环及其受累的皮肤、肾脏和胃肠道组织中普遍存在NETs,这些NETs与疾病的活动性密切相关。本文旨在综述NETs在IgAV发病机制中的潜在作用,并探讨其作为评估IgAV疾病活动性生物标志物的应用前景。
中图分类号:
沈孟达, 邬秀娣. 中性粒细胞胞外诱捕网在免疫球蛋白A血管炎发病机制中的研究进展[J]. 临床荟萃, 2024, 39(12): 1141-1146.
[1] | Held M, Kozmar A, Sestan M, et al. Insight into the interplay of Gd-IgA1, HMGB1, RAGE and PCDH1 in IgA vasculitis (IgAV)[J]. Int J Mol Sci, 2024, 25(8): 4383. |
[2] | Jelusic M, Sestan M, Giani T, et al. New insights and challenges associated with IgA vasculitis and IgA vasculitis with nephritis-is it time to change the paradigm of the most common systemic vasculitis in childhood?[J]. Front Pediatr, 2022, 10: 853724. |
[3] |
Schnabel A, Hedrich CM. Childhood vasculitis[J]. Front Pediatr, 2018, 6: 421.
doi: 10.3389/fped.2018.00421 pmid: 30687686 |
[4] | Leung AKC, Barankin B, Leong KF. Henoch-schonlein purpura in children: An updated review[J]. Curr Pediatr Rev, 2020, 16(4): 265-276. |
[5] | Kifer N, Bulimbasic S, Sestan M, et al. Semiquantitative classification (SQC) and Oxford classifications predict poor renal outcome better than The International Study of Kidney Disease in Children (ISKDC) and Haas in patients with IgAV nephritis: A multicenter study[J]. J Nephrol, 2023, 36(2): 441-449. |
[6] | Bergqvist C, Safi R, El Hasbani G, et al. Neutrophil extracellular traps are present in immune-complex-mediated cutaneous small vessel vasculitis and correlate with the production of reactive oxygen species and the severity of vessel damage[J]. Acta Derm Venereol, 2020, 100(17): adv00281. |
[7] | Chen XQ, Tu L, Zou JS, et al. The onvolvement of neutrophil extracellular traps in disease activity associated with IgA vasculitis[J]. Front Immunol, 2021, 12: 668974. |
[8] | Sadeghi M, Dehnavi S, Jamialahmadi T, et al. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases[J]. Int Immunopharmacol, 2023, 116: 109843. |
[9] | Shiratori-Aso S, Nakazawa D. The involvement of NETs in ANCA-associated vasculitis[J]. Front Immunol, 2023, 14: 1261151. |
[10] | Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different M.O[J]. Front Immunol, 2021, 12: 649693. |
[11] | 宋子怡, 张升校, 苏勤怡, 等. 中性粒细胞胞外诱捕网在类风湿关节炎发病机制中的研究进展[J]. 医学研究杂志, 2023, 52(7): 15-18. |
[12] | 达古拉, 李鸿斌. 中性粒细胞胞外诱捕网在自身免疫病中的研究进展[J]. 中华风湿病学杂志, 2018, 22(8): 573-575. |
[13] |
Rosales C. Neutrophil: A cell with many roles in inflammation or several cell types?[J]. Front Physiol, 2018, 9: 113.
doi: 10.3389/fphys.2018.00113 pmid: 29515456 |
[14] |
Petri B, Sanz MJ. Neutrophil chemotaxis[J]. Cell Tissue Res, 2018, 371(3): 425-436.
doi: 10.1007/s00441-017-2776-8 pmid: 29350282 |
[15] |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
doi: 10.1126/science.1092385 pmid: 15001782 |
[16] | Barnado A, Crofford LJ, Oates JC. At the bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases[J]. J Leukoc Biol, 2016, 99(2): 265-278. |
[17] |
Li C, Wu C, Li F, et al. Targeting neutrophil extracellular traps in gouty arthritis: Insights into pathogenesis and therapeutic potential[J]. J Inflamm Res, 2024, 17: 1735-1763.
doi: 10.2147/JIR.S460333 pmid: 38523684 |
[18] |
van der Linden M, van den Hoogen LL, Westerlaken GHA, et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome[J]. Rheumatology (Oxford), 2018, 57(7): 1228-1234.
doi: 10.1093/rheumatology/key067 pmid: 29608758 |
[19] | Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis[J]. Sci Transl Med, 2013, 5(178): 178ra140. |
[20] |
Wang W, Peng W, Ning X. Increased levels of neutrophil extracellular trap remnants in the serum of patients with rheumatoid arthritis[J]. Int J Rheum Dis, 2018, 21(2): 415-421.
doi: 10.1111/1756-185X.13226 pmid: 29106059 |
[21] | 高璇, 林江涛. 中性粒细胞胞外诱捕网在ANCA相关性血管炎发病机制中的作用[J]. 中华临床免疫和变态反应杂志, 2022, 16(1): 60-65. |
[22] | Jianati R, Liu XX, Zhu XJ. Research advances in the etiology and pathogenesis of immunoglobulin A vasculitis[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2023, 25(12): 1287-1292. |
[23] | Nakazawa D, Ishizu A. Immunothrombosis in severe COVID-19[J]. EBioMedicine, 2020, 59: 102942. |
[24] |
Moore S, Juo HH, Nielsen CT, et al. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus[J]. J Rheumatol, 2020, 47(11): 1652-1660.
doi: 10.3899/jrheum.190875 pmid: 31839592 |
[25] | de Bont CM, Stokman MEM, Faas P, et al. Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis[J]. J Autoimmun, 2020, 113: 102484. |
[26] | Liu Q, Yang Y, Ge S, et al. Serum level of advanced oxidation protein products (AOPPs) in patients with Henoch-Schonlein purpura and its relationship with aberrant glycosylation of IgA1 and Cosmc mRNA expression[J]. Int J Dermatol, 2019, 58(9): 1092-1097. |
[27] | Chen XQ, Zou JS, Tu L, et al. Neutrophil extracellular traps involved in the pathogenesis of IgA vasculitis: Confirmed in two IgAV rat models[J]. PLoS One, 2023, 18(7): e0288538. |
[28] | 陆书文, 董晨, 关凤军. 中性粒细胞胞外诱捕网在儿童IgA血管炎中的表达及临床意义[J]. 医学研究杂志, 2023, 52(10): 169-172. |
[29] |
Yuan Y, Liu J, Zhou Y, et al. The relationship between monocyte-to-lymphocyte ratio and the risk of gastrointestinal system involvement in children with IgA vasculitis: A preliminary report[J]. Adv Clin Exp Med, 2021, 30(10): 999-1005.
doi: 10.17219/acem/138906 pmid: 34498816 |
[30] | Kim WK, Kim CJ, Yang EM. Risk factors for renal involvement in Henoch-Schonlein purpura[J]. J Pediatr (Rio J), 2021, 97(6): 646-650. |
[31] |
Hočevar A, Tomšič M, Jurčić V et al. Predicting gastrointestinal and renal involvement in adult IgA vasculitis[J]. Arthritis Res Ther, 2019, 21(1): 302.
doi: 10.1186/s13075-019-2089-2 pmid: 31878954 |
[32] |
Nagy GR, Kemény L, Bata-Csörgő Z. Neutrophil-to-lymphocyte ratio: A biomarker for predicting systemic involvement in adult IgA vasculitis patients[J]. J Eur Acad Dermatol Venereol, 2017, 31(6): 1033-1037.
doi: 10.1111/jdv.14176 pmid: 28222228 |
[33] | Park CH, Han DS, Jeong JY, et al. The optimal cut-off value of neutrophil-to-lymphocyte ratio for predicting prognosis in adult patients with Henoch-Schonlein purpura[J]. PLoS One, 2016, 11(4): e0153238. |
[34] | Takeuchi S, Kawakami T, Okano T, et al. Elevated myeloperoxidase-DNA complex levels in sera of patients with IgA vasculitis[J]. Pathobiology, 2022, 89(1): 23-28. |
[35] |
Aleyd E, van Hout MW, Ganzevles SH, et al. IgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcalpha receptor I[J]. J Immunol, 2014, 192(5): 2374-2383.
doi: 10.4049/jimmunol.1300261 pmid: 24493821 |
[36] |
Granger V, Peyneau M, Chollet-Martin S, et al. Neutrophil extracellular traps in autoimmunity and allergy: Immune complexes at work[J]. Front Immunol, 2019, 10: 2824.
doi: 10.3389/fimmu.2019.02824 pmid: 31849989 |
[37] | Fousert E, Toes R, Desai J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses[J]. Cells, 2020, 9(4) :915. |
[38] | Kawakami T, Yokoyama K, Ikeda T, et al. Similar deposition of neutrophil extracellular traps in the dermis among COVID-19-associated IgA vasculitis, post-COVID-19 vaccination IgA vasculitis, and COVID-19-unrelated IgA vasculitis[J]. J Dermatol, 2023, 50(5): e151-e152. |
[39] |
Mayer-Hain S, Gebhardt K, Neufeld M, et al. Systemic activation of neutrophils by immune complexes is critical to IgA vasculitis[J]. J Immunol, 2022, 209(6): 1048-1058.
doi: 10.4049/jimmunol.2100924 pmid: 35985788 |
[40] | Moresco RN, Speeckaert MM, Zmonarski SC, et al. Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and Henoch-Schonlein purpura nephritis[J]. BBA Clin, 2016, 5: 79-84. |
[41] |
Aleyd E, Al M, Tuk CW, et al. IgA complexes in plasma and synovial fluid of patients with rheumatoid arthritis induce neutrophil extracellular traps via FcαRI[J]. J Immunol, 2016, 197(12): 4552-4559.
pmid: 27913645 |
[42] |
Stoiber W, Obermayer A, Steinbacher P, et al. The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans[J]. Biomolecules, 2015, 5(2): 702-723.
doi: 10.3390/biom5020702 pmid: 25946076 |
[43] | Perdomo J, Leung HHL. Immune thrombosis: Exploring the significance of immune complexes and NETosis[J]. Biology (Basel), 2023, 12(10):1332. |
[44] | Meng W, Paunel-Görgülü A, Flohé S, et al. Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma[J]. Mediators Inflamm, 2012, 2012: 149560. |
[45] | Hao H, Yu H, Sun H, et al. DNaseI protects lipopolysaccharide-induced endometritis in mice by inhibiting neutrophil extracellular traps formation[J]. Microb Pathog, 2021, 150: 104686. |
[46] | Chen XQ, Tu L, Tang Q, et al. DNase I targeted degradation of neutrophil extracellular traps to reduce the damage on IgAV rat[J]. PLoS One, 2023, 18(10): e0291592. |
[47] | Hakkim A, Fürnrohr BG, Amann K, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis[J]. Proc Natl Acad Sci U S A, 2010, 107(21): 9813-9818. |
[48] | Malíˇcková K, Duricová D, Bortlík M, et al. Impaired deoxyribonuclease I activity in patients with inflammatory bowel diseases[J]. Autoimmune Dis, 2011, 2011: 945861. |
[49] |
Pruchniak MP, Ostafin M, Wachowska M, et al. Neutrophil extracellular traps generation and degradation in patients with granulomatosis with polyangiitis and systemic lupus erythematosus[J]. Autoimmunity, 2019, 52(3): 126-135.
doi: 10.1080/08916934.2019.1631812 pmid: 31257985 |
[50] |
Masuda S, Nonokawa M, Futamata E, et al. Formation and disordered degradation of neutrophil extracellular traps in necrotizing lesions of anti-neutrophil cytoplasmic antibody-associated vasculitis[J]. Am J Pathol, 2019, 189(4): 839-846.
doi: S0002-9440(18)30771-5 pmid: 30677396 |
[51] |
Leffler J, Martin M, Gullstrand B, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease[J]. J Immunol, 2012, 188(7): 3522-3531.
doi: 10.4049/jimmunol.1102404 pmid: 22345666 |
[52] | Napirei M, Wulf S, Mannherz HG. Chromatin breakdown during necrosis by serum DNase1 and the plasminogen system[J]. Arthritis Rheum, 2004, 50(6): 1873-1883. |
[53] |
Deng Z, Yang Z, Ma X, et al. Urinary metal and metalloid biomarker study of Henoch-Schonlein purpura nephritis using inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry[J]. Talanta, 2018, 178: 728-735.
doi: S0039-9140(17)31055-X pmid: 29136888 |
[54] |
Purevdorj N, Mu Y, Gu Y, et al. Clinical significance of the serum biomarker index detection in children with Henoch-Schonlein purpura[J]. Clin Biochem, 2018, 52: 167-170.
doi: S0009-9120(17)30879-2 pmid: 29129626 |
[55] | Michailidou D, Kuley R, Wang T, et al. Neutrophil extracellular trap formation in anti-neutrophil cytoplasmic antibody-associated and large-vessel vasculitis[J]. Clin Immunol, 2023, 249: 109274. |
[56] |
Dyer MR, Chen Q, Haldeman S, et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA[J]. Sci Rep, 2018, 8(1): 2068.
doi: 10.1038/s41598-018-20479-x pmid: 29391442 |
[57] |
Moss J, Magenheim J, Neiman D, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease[J]. Nat Commun, 2018, 9(1): 5068.
doi: 10.1038/s41467-018-07466-6 pmid: 30498206 |
[1] | 马洪珍, 张涛. 生物标志物评估老年慢性肾脏病患者心功能的研究进展[J]. 临床荟萃, 2022, 37(9): 855-859. |
[2] | 曹晶晶, 张英杰, 常丽娟. 心房颤动发病机制及相关生物标志物研究进展[J]. 临床荟萃, 2022, 37(10): 946-949. |
[3] | 陈易欣, 周芳芳, 罗群. 急性肾损伤集束化治疗的研究进展[J]. 临床荟萃, 2021, 36(4): 370-373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||