[1] |
Carlisle MA, Fudim M, DeVore AD, et al. Heart failure and atrial fibrillation,like fire and fury[J]. JACC Heart Fail, 2019, 7(6):447-456.
doi: 10.1016/j.jchf.2019.03.005
URL
|
[2] |
Zimetbaum P. Atrial fibrillation[J]. Ann Intern Med, 2017, 166(5):ITC33-ITC48.
doi: 10.7326/AITC201703070
URL
|
[3] |
Qiu D, Peng L, Ghista DN, et al. Left atrial remodeling mechanisms associated with atrial fibrillation[J]. Cardiovasc Eng Technol, 2021, 12(3):361-372.
doi: 10.1007/s13239-021-00527-w
pmid: 33650086
|
[4] |
Dridi H, Kushnir A, Zalk R, et al. Intracellular calcium leak in heart failure and atrial fibrillation: A unifying mechanism and therapeutic target[J]. Nat Rev Cardiol, 2020, 17(11):732-747.
doi: 10.1038/s41569-020-0394-8
URL
|
[5] |
Beyer C, Tokarska L, Stühlinger M, et al. Structural cardiac remodeling in atrial fibrillation[J]. JACC Cardiovasc Imaging, 2021, 14(11):2199-2208.
doi: 10.1016/j.jcmg.2021.04.027
URL
|
[6] |
Yamaguchi N, Xiao J, Narke D, et al. Cardiac pressure overload decreases ETV1 expression in the left atrium, contributing to atrial electrical and structural remodeling[J]. Circulation, 2021, 143(8):805-820.
doi: 10.1161/CIRCULATIONAHA.120.048121
pmid: 33225722
|
[7] |
Menanga AP, Nganou-Gnindjio CN, Ahinaga AJ, et al. Left atrial structural and functional remodeling study in type 2 diabetic patients in sub-Saharan Africa: Role of left atrial strain by 2D speckle tracking echocardiography[J]. Echocardiography, 2021, 38(1):25-30.
doi: 10.1111/echo.14915
pmid: 33124110
|
[8] |
Sheng X, Scherlag BJ, Yu L, et al. Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation[J]. J Am Coll Cardiol, 2011, 57(5):563-571.
doi: 10.1016/j.jacc.2010.09.034
pmid: 21272747
|
[9] |
Oliveira ÍM, Silva Júnior ELD, Martins YO, et al. Cardiac autonomic nervous system remodeling may play a role in atrial fibrillation: A study of the autonomic nervous system and myocardial receptors[J]. Arq Bras Cardiol, 2021, 117(5):999-1007.
doi: 10.36660/abc.20200725
pmid: 34406322
|
[10] |
Qin M, Zeng C, Liu X. The cardiac autonomic nervous system: A target for modulation of atrial fibrillation[J]. Clin Cardiol, 2019, 42(6):644-652.
doi: 10.1002/clc.23190
pmid: 31038759
|
[11] |
Ono K. How is uric acid related to atrial fibrillation?[J]. Circ J, 2019, 83(4):705-706.
doi: 10.1253/circj.CJ-19-0134
pmid: 30814432
|
[12] |
Taufiq F, Li P, Miake J. Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid[J]. Circ Rep, 2019, 1(11):469-473.
doi: 10.1253/circrep.CR-19-0088
pmid: 33693087
|
[13] |
Yao Y, Shang MS, Dong JZ. Homocysteine in non-valvular atrial fibrillation: Role and clinical implications[J]. Clin Chim Acta, 2017, 475:85-90.
doi: S0009-8981(17)30408-4
pmid: 29050786
|
[14] |
Dong XJ, Wang BB, Hou FF, et al. Homocysteine (HCY) levels in patients with atrial fibrillation (AF): A meta-analysis[J]. Int J Clin Pract, 2021, 75(12):e14738.
|
[15] |
Steed MM, Tyagi SC. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia[J]. Antioxid Redox Signal, 2011, 15(7):1927-1943.
doi: 10.1089/ars.2010.3721
URL
|
[16] |
Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation[J]. Circulation, 2004, 109(3):363-368.
pmid: 14732752
|
[17] |
Canpolat U, Oto A, Hazirolan T, et al. A prospective DE-MRI study evaluating the role of TGF-β1 in left atrial fibrosis and implications for outcomes of cryoballoon-based catheter ablation: New insights into primary fibrotic atriocardiomyopathy[J]. J Cardiovasc Electrophysiol, 2015, 26(3):251-259.
|
[18] |
Cai B, Shan L, Gong D, et al. Homocysteine modulates sodium channel currents in human atrial myocytes[J]. Toxicology, 2009, 256(3):201-206.
doi: 10.1016/j.tox.2008.11.020
pmid: 19110030
|
[19] |
Cai BZ, Gong DM, Liu Y, et al. Homocysteine inhibits potassium channels in human atrial myocytes[J]. Clin Exp Pharmacol Physiol, 2007, 34(9):851-855.
doi: 10.1111/j.1440-1681.2007.04671.x
URL
|
[20] |
Law P, Kharche S, Stott J, et al. Effects of elevated Homocysteine hormone on electrical activity in the human atrium: A simulation study[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 2009:3936-3939.
doi: 10.1109/IEMBS.2009.5333530
pmid: 19964086
|
[21] |
Mishra PK, Tyagi N, Kundu S, et al. MicroRNAs are involved in homocysteine-induced cardiac remodeling[J]. Cell Biochem Biophys, 2009, 55(3):153-162.
doi: 10.1007/s12013-009-9063-6
pmid: 19669742
|
[22] |
Si Y, Fan W, Sun L. A review of the relationship between CTRP family and coronary artery disease[J]. Curr Atheroscler Rep, 2020, 22(6):22.
doi: 10.1007/s11883-020-00840-0
pmid: 32468164
|
[23] |
Li Y, Wright GL, Peterson JM. C1q/TNF-related protein 3 (CTRP3) function and regulation[J]. Compr Physiol, 2017, 7(3):863-878.
doi: 10.1002/cphy.c160044
pmid: 28640446
|
[24] |
Mourilhe-Rocha R, Bittencourt MI. CTRP-3 levels in patients with stable coronary artery disease and paroxysmal atrial fibrillation: A new potential biomarker in cardiovascular diseases[J]. Arq Bras Cardiol, 2022, 118(1):59-60.
doi: 10.36660/abc.20210940
pmid: 35195209
|
[25] |
Sonmez O, Ertem FU, Vatankulu MA, et al. Novel fibro-inflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation[J] .Med Sci Monit, 2014, 20: 463-470.
doi: 10.12659/MSM.890635
URL
|
[26] |
Scaglione M, Gallo C, Battaglia A, et al. Long-term progression from paroxysmal to permanent atrial fibrillation following transcatheter ablation in a large single-center experience[J]. Heart Rhythm, 2014, 11: 777-782.
doi: 10.1016/j.hrthm.2014.02.018
pmid: 24561164
|
[27] |
Ko D, Benson MD, Ngo D, et al. Proteomics profiling and risk of new-onset atrial fibrillation: Framingham heart study[J]. J Am Heart Assoc, 2019, 8(6):e010976.
doi: 10.1161/JAHA.118.010976
URL
|