临床荟萃 ›› 2021, Vol. 36 ›› Issue (4): 374-378.doi: 10.3969/j.issn.1004-583X.2021.04.018
收稿日期:
2020-10-08
出版日期:
2021-04-20
发布日期:
2021-05-13
通讯作者:
张志华
E-mail:zzhangzhihua@163.com
基金资助:
Received:
2020-10-08
Online:
2021-04-20
Published:
2021-05-13
摘要:
肠道微生态由肠道正常菌群及其所生活的环境共同构成,肠道菌群承担着人体多种生理功能,包括免疫、代谢和内分泌功能等,被视为人体“器官”,在维持人体健康中起着至关重要的作用。抗生素常用于治疗各种感染性疾病,抗生素可消灭患者机体的大多数致病菌,但同时也严重破坏了肠道微生态平衡导致肠道菌群失调和各种急慢性疾病,抗生素对肠道微生物组成和结构的影响,取决于抗生素的种类、剂量和应用时间。本文综述了抗生素与肠道微生态的相互作用关系及其对健康和疾病的影响,以期为临床中使用抗生素的利弊权衡提供参考依据。
中图分类号:
栗冲, 王硕, 张志华. 抗生素与肠道微生态的关系[J]. 临床荟萃, 2021, 36(4): 374-378.
[1] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018,11(1):1-10.
doi: 10.1007/s12328-017-0813-5 URL |
[2] |
Meng C, Bai C, Brown TD, et al. Human gut microbiota and gastrointestinal cancer[J]. Genomics Proteomics Bioinformatics, 2018,16(1):33-49.
doi: 10.1016/j.gpb.2017.06.002 URL |
[3] |
Blaser MJ. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016,352(6285):544-545.
doi: 10.1126/science.aad9358 URL |
[4] |
Soldi S, Vasileiadis S, Uggeri F, et al. Modulation of the gut microbiota composition by rifaximin in non-constipated irritable bowel syndrome patients: A molecular approach[J]. Clin Exp Gastroenterol, 2015,8:309-325.
doi: 10.2147/CEG.S89999 pmid: 26673000 |
[5] |
Ponziani FR, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation: The eubiotic effects of rifaximin[J]. Dig Dis, 2016,34(3):269-278.
doi: 10.1159/000443361 URL |
[6] |
Kim IS, Yoo DH, Jung IH, et al. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin[J]. Biochem Pharmacol, 2016,122:72-79.
doi: 10.1016/j.bcp.2016.09.023 URL |
[7] |
Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure[J]. Nat Microbiol, 2018,3(11):1255-1265.
doi: 10.1038/s41564-018-0257-9 pmid: 30349083 |
[8] |
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: Between good and evil[J]. Gut, 2016,65(11):1906-1915.
doi: 10.1136/gutjnl-2016-312297 URL |
[9] | Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem?[J]. Front Microbiol, 2016,7:455. |
[10] |
Simonyte Sjödin K, Vidman L, Rydén P, et al. Emerging evidence of the role of gut microbiota in the development of allergic diseases[J]. Curr Opin Allergy Clin Immunol, 2016,16(4):390-395.
doi: 10.1097/ACI.0000000000000277 pmid: 27253486 |
[11] |
Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children[J]. Nat Commun, 2016,7:10410.
doi: 10.1038/ncomms10410 pmid: 26811868 |
[12] |
Iizumi T, Battaglia T, Ruiz V, et al. Gut microbiome and antibiotics[J]. Arch Med Res, 2017,48(8):727-734.
doi: 10.1016/j.arcmed.2017.11.004 URL |
[13] |
Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity[J]. J Hepatol, 2014,60(4):824-831.
doi: 10.1016/j.jhep.2013.11.034 URL |
[14] |
Isanaka S, Langendorf C, Berthé F, et al. Routine amoxicillin for uncomplicated severe acute malnutrition in children[J]. N Engl J Med, 2016,374(5):444-453.
doi: 10.1056/NEJMoa1507024 URL |
[15] |
Arboleya S, Sánchez B, Solís G, et al. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota: A functional inference study[J]. Int J Mol Sci, 2016,17(5):649.
doi: 10.3390/ijms17050649 URL |
[16] |
Hwang I, Park YJ, Kim YR, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J]. Faseb J, 2015,29(6):2397-2411.
doi: 10.1096/fsb2.v29.6 URL |
[17] |
Stewardson AJ, Gaïa N, François P, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: A culture-free analysis of gut microbiota[J]. Clin Microbiol Infect, 2015, 21(4): 344.e1-11.
doi: 10.1016/j.cmi.2014.11.016 URL |
[18] |
Rashid MU, Zaura E, Buijs MJ, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods[J]. Clin Infect Dis, 2015,60(Suppl 2):S77-84.
doi: 10.1093/cid/civ137 URL |
[19] |
Iizumi T, Taniguchi T, Yamazaki W, et al. Effect of antibiotic pre-treatment and pathogen challenge on the intestinal microbiota in mice[J]. Gut Pathog, 2016,8:60.
doi: 10.1186/s13099-016-0143-z URL |
[20] |
Agamennone V, Krul CAM, Rijkers G, et al. A practical guide for probiotics applied to the case of antibiotic-associated diarrhea in the netherlands[J]. BMC Gastroenterol, 2018,18(1):103.
doi: 10.1186/s12876-018-0831-x pmid: 30078376 |
[21] |
McFarland LV, Ozen M, Dinleyici EC, et al. Comparison of pediatric and adult antibiotic-associated diarrhea and clostridium difficile infections[J]. World J Gastroenterol, 2016,22(11):3078-104.
doi: 10.3748/wjg.v22.i11.3078 URL |
[22] |
Larcombe S, Hutton ML, Lyras D. Involvement of bacteria other than clostridium difficile in antibiotic-associated diarrhoea[J]. Trends Microbiol, 2016,24(6):463-476.
doi: 10.1016/j.tim.2016.02.001 URL |
[23] |
Monaghan TM, Cockayne A, Mahida YR. Pathogenesis of clostridium difficile infection and its potential role in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2015,21(8):1957-66.
doi: 10.1097/MIB.0000000000000461 URL |
[24] |
Vogt SL, Peña-Díaz J, Finlay BB. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens[J]. Anaerobe, 2015,34:106-15.
doi: 10.1016/j.anaerobe.2015.05.002 URL |
[25] |
GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017,377(1):13-27.
doi: 10.1056/NEJMoa1614362 URL |
[26] |
Li M, Xue H, Wang W, et al. Increased obesity risks for being an only child in China: Findings from a nationally representative study of 19, 487 children[J]. Public Health, 2017,153:44-51.
doi: S0033-3506(17)30229-9 pmid: 28843799 |
[27] |
Nogacka AM, Salazar N, Arboleya S, et al. Early microbiota, antibiotics and health[J]. Cell Mol Life Sci, 2018,75(1):83-91.
doi: 10.1007/s00018-017-2670-2 URL |
[28] |
Azad MB, Bridgman SL, Becker AB, et al. Infant antibiotic exposure and the development of childhood overweight and central adiposity[J]. Int J Obes (Lond), 2014,38(10):1290-1298.
doi: 10.1038/ijo.2014.119 pmid: 25012772 |
[29] |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases[J]. Curr Neurol Neurosci Rep, 2017,17(12):94.
doi: 10.1007/s11910-017-0802-6 pmid: 29039142 |
[30] |
O'Mahony SM, Clarke G, Dinan TG, et al. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle?[J]. Neuroscience, 2017,342:37-54.
doi: S0306-4522(15)00895-7 pmid: 26432952 |
[31] |
Slykerman RF, Thompson J, Waldie KE, et al. Antibiotics in the first year of life and subsequent neurocognitive outcomes[J]. Acta Paediatr, 2017,106(1):87-94.
doi: 10.1111/apa.13613 URL |
[32] |
Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior[J]. Nat Commun, 2017,8:15062.
doi: 10.1038/ncomms15062 pmid: 28375200 |
[33] |
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation[J]. Genome Med, 2016,8(1):39.
doi: 10.1186/s13073-016-0294-z pmid: 27074706 |
[34] |
Lapin B, Piorkowski J, Ownby D, et al. Relationship between prenatal antibiotic use and asthma in at-risk children[J]. Ann Allergy Asthma Immunol, 2015,114(3):203-207.
doi: 10.1016/j.anai.2014.11.014 URL |
[35] |
Hirsch AG, Pollak J, Glass TA, et al. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases[J]. Clin Exp Allergy, 2017,47(2):236-244.
doi: 10.1111/cea.12807 URL |
[36] | Stensballe LG, Simonsen J, Jensen SM, et al. Use of antibiotics during pregnancy increases the risk of asthma in early childhood[J]. J Pediatr, 2013, 162(4):832-838.e3. |
[37] |
Patrick DM, Sbihi H, Dai DLY, et al. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: Evidence from population-based and prospective cohort studies[J]. Lancet Respir Med, 2020,8(11):1094-1105.
doi: 10.1016/S2213-2600(20)30052-7 URL |
[1] | 黄宇玲, 张欣悦, 荣萍萍, 杨文琦, 曹新营, 邢彩耐, 王志军, 刘宁. Non-HDL-C/HDL-C和NHR与冠状动脉病变严重程度的相关性[J]. 临床荟萃, 2024, 39(2): 115-120. |
[2] | 王沁濡, 尹琴, 李娟, 甘洪玉. 中医药治疗慢性阻塞性肺疾病合并肺动脉高压的研究进展[J]. 临床荟萃, 2024, 39(2): 188-192. |
[3] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[4] | 宋佳亮, 蒋英杰, 孔瑞娜, 蔡青, 高洁. 以IgE和嗜酸粒细胞升高伴多发淋巴结肿大为主要表现的IgG4相关性疾病1例报告[J]. 临床荟萃, 2024, 39(1): 57-60. |
[5] | 李华, 陈建军, 未纪涛, 张旗. 血清胱抑素C水平与非阻塞性冠状动脉疾病的关系[J]. 临床荟萃, 2023, 38(9): 802-805. |
[6] | 顾天舒, 梁雪, 蔡嘉庚, 李广平. m6A RNA甲基化修饰在心血管疾病中的进展[J]. 临床荟萃, 2023, 38(8): 743-748. |
[7] | 武颖颖, 孔维香. 端粒及端粒酶逆转录酶基因与慢性阻塞性肺疾病相关性的研究进展[J]. 临床荟萃, 2023, 38(8): 749-752. |
[8] | 陈晓天, 霍丽娟. 血清总胆红素水平在炎症性肠病中临床意义的meta分析[J]. 临床荟萃, 2023, 38(8): 677-685. |
[9] | 张会, 丁东瑞, 金天然. 新型冠状病毒SARS-CoV-2的相关研究——过去与未来[J]. 临床荟萃, 2023, 38(7): 638-646. |
[10] | 高伟康, 全建华, 牛新荣. MODS并肾上腺危象漏诊患者1例并文献复习[J]. 临床荟萃, 2023, 38(4): 356-358. |
[11] | 张莹, 涂平华, 吴展陵. 慢性阻塞性肺疾病表型的研究进展[J]. 临床荟萃, 2023, 38(4): 377-380. |
[12] | 王子佳, 王九雪, 王天俊. 抗甲状腺抗体阳性的视神经脊髓炎1例并文献复习[J]. 临床荟萃, 2023, 38(3): 264-267. |
[13] | 廖坤锋, 姚依松, 杨金盘, 杨西宁, 李亚如, 周红颜, 梁飘. 2型糖尿病患者恐惧疾病进展的现状及影响因素[J]. 临床荟萃, 2023, 38(12): 1095-1100. |
[14] | 春梅, 甄瑾, 晏燕, 刘斌, 李敏, 孙霞. 误诊为肌萎缩侧索硬化的神经型布氏杆菌病1例并文献复习[J]. 临床荟萃, 2023, 38(12): 1101-1106. |
[15] | 代菁, 陈华茜. 血液透析患者自发性肾破裂1例并文献复习[J]. 临床荟萃, 2023, 38(12): 1107-1111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||