临床荟萃 ›› 2022, Vol. 37 ›› Issue (8): 743-747.doi: 10.3969/j.issn.1004-583X.2022.08.013
收稿日期:
2022-02-17
出版日期:
2022-08-20
发布日期:
2022-09-26
通讯作者:
朱斌斌
E-mail:pingchi1983@126.com
基金资助:
Received:
2022-02-17
Online:
2022-08-20
Published:
2022-09-26
摘要:
神经认知障碍是以认知功能水平下降为特征的一类疾病,严重影响患者生活的自主性和独立性。由于药物治疗的副作用及疗效的不确定性,人们对非药物治疗的需求越来越迫切。研究表明,虚拟现实技术对神经认知障碍有改善作用。本文通过对虚拟现实技术在神经认知障碍中的应用及相关机制进行综述,旨在为临床神经认知障碍的非药物干预提供依据。
中图分类号:
周彦伶, 朱斌斌, 曹盎洋, 罗文君. 虚拟现实技术改善神经认知障碍的研究进展[J]. 临床荟萃, 2022, 37(8): 743-747.
作者 | 病种 | 评估工具 | VR干预 | 改善方面 | 可能机制 | |||
---|---|---|---|---|---|---|---|---|
干预 方式 | 沉浸 程度 | 时间 | 干预频率 | |||||
Anderson-Hanley 2012[ | 正常老年人 | MMSE、Stroop C | 游戏 | 半沉浸式 | 8周 | 5次/周,45 min/次 | 认知功能、自理能力 | BDNF增加 |
Liao 2020[ | MCI | TMT、SCWT、步态性能评估 | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 知觉-运动功能、执行功能、注意力、自理能力 | 认知刺激 |
Torpil 2021[ | MCI | LOTCA-G | 游戏 | 沉浸式 | 12周 | 2次/周,45 min/次 | 知觉-运动功能、认知功能、注意力 | 认知刺激 |
Liao 2019[ | MCI | Moca、IADL | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 执行功能、注意力、语言能力 | 神经可塑性 |
Riaz 2021[ | MCI | Moca | 游戏 | 沉浸式 | 6周 | 2次/周,40 min/次 | 认知功能、心理功能 | 环境刺激 |
Bahar-Fuchs 2019[ | 正常老年人、痴呆症 | MMSE、ACE-III | 游戏 | 沉浸式 | 6周 | 2次/周,45~60 min/次 | 知觉-运动功能、学习和记忆能力 | 认知刺激 |
Oliveira 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 2周 | 2次/周,45 min/次 | 认知功能 | 认知储备 |
Serino 2017[ | AD | MMSE、Fab | 任务 | 半沉浸式 | 3~ 4周 | 3次/周,10~15 min/次 | 知觉-运动功能、执行功能 | 认知刺激;增强额叶和海马体功能;神经可塑性 |
Doniger 2018[ | AD | MRI | 任务 | 沉浸式 | 12周 | 2次/周,45 min/次 | 认知功能、执行功能、学习和记忆能力 | 认知储备;神经可塑性;激活前额叶和海马体 |
White 2016[ | AD | Moca、MMSE | 任务 | 沉浸式 | 7周 | 3次/周,45 min/次 | 认知功能、学习和记忆能力、自理能力、幸福感 | 认知储备;激活海马体;BDNF增加 |
Panerai 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 8周 | 5次/周 60 min/次 | 自理能力 | 认知刺激 |
Bauer 2020[ | 正常老年人 | Moca | 任务 | 沉浸式 | 6周 | 2次/周,30 min/次 | 认知功能、执行功能、注意力、幸福感 | 认知刺激 |
Delbroek 2017[ | 正常老年人 | Moca、IMI | 任务 | 非沉浸式 | 6周 | 12次/周,30 min/次 | 注意力、记忆力、 平衡力 | 未提 |
Maeng 2021[ | MCI | 数字广度试验、Stroop-C | 任务 | 沉浸式 | 4周 | 2次/周,50 min/次 | 学习和记忆,额叶功能方面的认知改善 | 额叶激活,认知 刺激 |
Hwang 2017[ | MCI | MMSE、视觉广度测试 | 任务 | 半沉浸式 | 4周 | 5次/周,30 min/次 | 缓解抑郁,改善认知和平衡能力 | 未提 |
表1 VR干预方式及其疗效评价
作者 | 病种 | 评估工具 | VR干预 | 改善方面 | 可能机制 | |||
---|---|---|---|---|---|---|---|---|
干预 方式 | 沉浸 程度 | 时间 | 干预频率 | |||||
Anderson-Hanley 2012[ | 正常老年人 | MMSE、Stroop C | 游戏 | 半沉浸式 | 8周 | 5次/周,45 min/次 | 认知功能、自理能力 | BDNF增加 |
Liao 2020[ | MCI | TMT、SCWT、步态性能评估 | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 知觉-运动功能、执行功能、注意力、自理能力 | 认知刺激 |
Torpil 2021[ | MCI | LOTCA-G | 游戏 | 沉浸式 | 12周 | 2次/周,45 min/次 | 知觉-运动功能、认知功能、注意力 | 认知刺激 |
Liao 2019[ | MCI | Moca、IADL | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 执行功能、注意力、语言能力 | 神经可塑性 |
Riaz 2021[ | MCI | Moca | 游戏 | 沉浸式 | 6周 | 2次/周,40 min/次 | 认知功能、心理功能 | 环境刺激 |
Bahar-Fuchs 2019[ | 正常老年人、痴呆症 | MMSE、ACE-III | 游戏 | 沉浸式 | 6周 | 2次/周,45~60 min/次 | 知觉-运动功能、学习和记忆能力 | 认知刺激 |
Oliveira 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 2周 | 2次/周,45 min/次 | 认知功能 | 认知储备 |
Serino 2017[ | AD | MMSE、Fab | 任务 | 半沉浸式 | 3~ 4周 | 3次/周,10~15 min/次 | 知觉-运动功能、执行功能 | 认知刺激;增强额叶和海马体功能;神经可塑性 |
Doniger 2018[ | AD | MRI | 任务 | 沉浸式 | 12周 | 2次/周,45 min/次 | 认知功能、执行功能、学习和记忆能力 | 认知储备;神经可塑性;激活前额叶和海马体 |
White 2016[ | AD | Moca、MMSE | 任务 | 沉浸式 | 7周 | 3次/周,45 min/次 | 认知功能、学习和记忆能力、自理能力、幸福感 | 认知储备;激活海马体;BDNF增加 |
Panerai 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 8周 | 5次/周 60 min/次 | 自理能力 | 认知刺激 |
Bauer 2020[ | 正常老年人 | Moca | 任务 | 沉浸式 | 6周 | 2次/周,30 min/次 | 认知功能、执行功能、注意力、幸福感 | 认知刺激 |
Delbroek 2017[ | 正常老年人 | Moca、IMI | 任务 | 非沉浸式 | 6周 | 12次/周,30 min/次 | 注意力、记忆力、 平衡力 | 未提 |
Maeng 2021[ | MCI | 数字广度试验、Stroop-C | 任务 | 沉浸式 | 4周 | 2次/周,50 min/次 | 学习和记忆,额叶功能方面的认知改善 | 额叶激活,认知 刺激 |
Hwang 2017[ | MCI | MMSE、视觉广度测试 | 任务 | 半沉浸式 | 4周 | 5次/周,30 min/次 | 缓解抑郁,改善认知和平衡能力 | 未提 |
[1] |
Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: The DSM-5 approach[J]. Nat Rev Neurol, 2014, 10(11): 634-642.
doi: 10.1038/nrneurol.2014.181 pmid: 25266297 |
[2] |
Jin R, Pilozzi A, Huang X. Current cognition tests, potential virtual reality applications, and serious games in cognitive assessment and non-pharmacological therapy for neurocognitive disorders[J]. J Clin Med, 2020, 9(10):3287.
doi: 10.3390/jcm9103287 URL |
[3] |
Zhu S, Sui Y, Shen Y, et al. Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis[J]. Front Aging Neurosci, 2021, 13: 586999.
doi: 10.3389/fnagi.2021.586999 URL |
[4] | Freeman D, Rosebrock L, Waite F, et al. Virtual reality (VR) therapy for patients with psychosis: Satisfaction and side effects[J]. Psychol Med, 2022: 1-12. |
[5] |
García-Betances RI, Arredondo Waldmeyer MT, Fico G, et al. A succinct overview of virtual reality technology use in Alzheimer's disease[J]. Front Aging Neurosci, 2015, 7: 80.
doi: 10.3389/fnagi.2015.00080 pmid: 26029101 |
[6] |
Sern Y. Cognitive reserve in ageing and Alzheimer's disease[J]. The Lancet Neurology, 2012, 11(11): 1006-1012.
doi: 10.1016/S1474-4422(12)70191-6 URL |
[7] |
Vacas S, Degos V, Maze M. Fragmented sleep enhances postoperative neuroinflammation but not cognitive dysfunction[J]. Anesth Analg, 2017, 124(1): 270-276.
pmid: 27755058 |
[8] |
Deary IJ, Corley J, Gow AJ, et al. Age-associated cognitive decline[J]. Br Med Bull, 2009, 92: 135-152.
doi: 10.1093/bmb/ldp033 URL |
[9] |
Mondini S, Madella I, Zangrossi A, et al. Cognitive reserve in dementia: Implications for cognitive training[J]. Front Aging Neurosci, 2016, 8: 84.
doi: 10.3389/fnagi.2016.00084 pmid: 27199734 |
[10] |
Feng X, Uchida Y, Koch L, et al. Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut microbiome in a rat model of metabolic syndrome[J]. Front Immunol, 2017, 8: 1768.
doi: 10.3389/fimmu.2017.01768 pmid: 29321779 |
[11] |
Anderson-Hanley C, Arciero PJ, Brickman AM, et al. Exergaming and older adult cognition: A cluster randomized clinical trial[J]. Am J Prev Med, 2012, 42(2): 109-119.
doi: 10.1016/j.amepre.2011.10.016 pmid: 22261206 |
[12] |
Zajᶏc-Lamparska L, Wiłko's'c-Dębczyńska M, Wojciechowski A, et al. Effects of virtual reality-based cognitive training in older adults living without and with mild dementia: A pretest-posttest design pilot study[J]. BMC Res Notes, 2019, 12(1): 776.
doi: 10.1186/s13104-019-4810-2 URL |
[13] | Sakaki K, Nouchi R, Matsuzaki Y, et al. Benefits of VR physical exercise on cognition in older adults with and without mild cognitive decline: A systematic review of randomized controlled trials[J]. Healthcare (Basel), 2021, 9(7):883. |
[14] |
Gamito P, Oliveira J, Alves C, et al. Virtual reality-based cognitive stimulation to improve cognitive functioning in community elderly: A controlled study[J]. Cyberpsychol Behav Soc Netw, 2020, 23(3):150-156.
doi: 10.1089/cyber.2019.0271 URL |
[15] | Liao YY, Tseng HY, Lin YJ, et al. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment[J]. Eur J Phys Rehabil Med, 2020, 56(1): 47-57. |
[16] |
Torpil B, Sahin S, Pekcetin S, et al. The effectiveness of a virtual reality-based intervention on cognitive functions in older adults with mild cognitive impairment: A single-blind, randomized controlled trial[J]. Games Health J, 2021, 10(2): 109-114.
doi: 10.1089/g4h.2020.0086 pmid: 33058735 |
[17] |
Arlati S, Di Santo SG, Franchini F, et al. Acceptance and usability of immersive virtual reality in older adults with objective and subjective cognitive decline[J]. J Alzheimers Dis, 2021, 80(3): 1025-1038.
doi: 10.3233/JAD-201431 pmid: 33646164 |
[18] |
Bott NT, Hall A, Madero EN, et al. Face-to-face and digital multidomain lifestyle interventions to enhance cognitive reserve and reduce risk of Alzheimer's disease and related dementias: A review of completed and prospective studies[J]. Nutrients, 2019, 11(9):2258.
doi: 10.3390/nu11092258 URL |
[19] |
Liao YY, Chen IH, Lin YJ, et al. Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: A randomized control trial[J]. Front Aging Neurosci, 2019, 11: 162.
doi: 10.3389/fnagi.2019.00162 URL |
[20] |
Riaz W, Khan ZY, Jawaid A, et al. Virtual reality (VR)-based environmental enrichment in older adults with mild cognitive impairment (MCI) and mild dementia[J]. Brain Sci, 2021, 11(8):1103.
doi: 10.3390/brainsci11081103 URL |
[21] | 2020 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2020. |
[22] |
Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: A systematic review and meta analysis[J]. Alzheimers Dement, 2013, 9(1): 63-75.e2.
doi: 10.1016/j.jalz.2012.11.007 URL |
[23] |
Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: A systematic review[J]. Int Psychogeriatr, 2014, 26(1): 9-18.
doi: 10.1017/S1041610213001385 pmid: 23962667 |
[24] |
Aguirre E, Woods RT, Spector A, et al. Cognitive stimulation for dementia: A systematic review of the evidence of effectiveness from randomised controlled trials[J]. Ageing Res Rev, 2013, 12(1): 253-262.
doi: 10.1016/j.arr.2012.07.001 pmid: 22889599 |
[25] | Bahar-Fuchs A, Martyr A, Goh AM, et al. Cognitive training for people with mild to moderate dementia[J]. Cochrane Database Syst Rev, 2019, 3(3): Cd013069. |
[26] |
Watt JA, Goodarzi Z, Veroniki AA, et al. Comparative efficacy of interventions for aggressive and agitated behaviors in dementia: A systematic review and network meta-analysis[J]. Ann Intern Med, 2019, 171(9): 633-642.
doi: 10.7326/M19-0993 pmid: 31610547 |
[27] |
Kim O, Pang Y, Kim JH. The effectiveness of virtual reality for people with mild cognitive impairment or dementia: A meta-analysis[J]. BMC Psychiatry, 2019, 19(1): 219.
doi: 10.1186/s12888-019-2180-x pmid: 31299921 |
[28] |
Hofmann M, Rösler A, Schwarz W, et al. Interactive computer-training as a therapeutic tool in Alzheimer’s disease[J]. Comprehensive Psychiatry, 2003, 44(3): 213-219.
pmid: 12764709 |
[29] |
Oliveira J, Gamito P, Souto T, et al. Virtual Reality-based cognitive stimulation on people with mild to moderate dementia due to Alzheimer’s disease: A pilot randomized controlled trial[J]. Int J Environ Res Public Health, 2021, 18(10):5290.
doi: 10.3390/ijerph18105290 URL |
[30] |
Serino S, Pedroli E, Tuena C, et al. A novel virtual reality-based training protocol for the enhancement of the “mental frame syncing” in individuals with Alzheimer's disease: A development-of-concept trial[J]. Front Aging Neurosci, 2017, 9: 240.
doi: 10.3389/fnagi.2017.00240 URL |
[31] |
Doniger GM, Beeri MS, Bahar-Fuchs A, et al. Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer's disease risk: A randomized controlled trial[J]. Alzheimers Dement (N Y), 2018, 4: 118-129.
doi: 10.1016/j.trci.2018.02.005 pmid: 29955655 |
[32] |
White PJ, Moussavi Z. Neurocognitive treatment for a patient with Alzheimer's disease using a virtual reality navigational environment[J]. J Exp Neurosci, 2016, 10: 129-135.
pmid: 27840579 |
[33] |
Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM)[J]. Codas, 2013, 25(2): 191-192.
doi: S2317-17822013000200017 pmid: 24413388 |
[34] |
Panerai S, Gelardi D, Catania V, et al. Functional living skills: A non-immersive virtual reality training for individuals with major neurocognitive disorders[J]. Sensors (Basel), 2021, 21(17):5751.
doi: 10.3390/s21175751 URL |
[35] |
Bauer ACM, Andringa G. The potential of immersive virtual reality for cognitive training in elderly[J]. Gerontology, 2020, 66(6): 614-623.
doi: 10.1159/000509830 URL |
[36] |
Delbroek T, Vermeylen W, Spildooren J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial[J]. J Phys Ther Sci, 2017, 29(7): 1137-1143.
doi: 10.1589/jpts.29.1137 pmid: 28744033 |
[37] |
Maeng S, Hong JP, Kim WH, et al. Effects of virtual reality-based cognitive training in the elderly with and without mild cognitive impairment[J]. Psychiatry Investig, 2021, 18(7): 619-627.
doi: 10.30773/pi.2020.0446 URL |
[38] |
Hwang J, Lee S. The effect of virtual reality program on the cognitive function and balance of the people with mild cognitive impairment[J]. J Phys Ther Sci, 2017, 29(8): 1283-1286.
doi: 10.1589/jpts.29.1283 pmid: 28878448 |
[39] |
Greenwood PM. The frontal aging hypothesis evaluated[J]. J Int Neuropsychol Soc, 2000, 6(6): 705-726.
doi: 10.1017/S1355617700666092 URL |
[40] |
Habib R, Nyberg L, Tulving E. Hemispheric asymmetries of memory: The HERA model revisited[J]. Trends Cogn Sci, 2003, 7(6): 241-245.
pmid: 12804689 |
[41] |
Lin X, Chen Y, Zhang P, et al. The potential mechanism of postoperative cognitive dysfunction in older people[J]. Experimental Gerontology, 2020, 130:110791.
doi: 10.1016/j.exger.2019.110791 URL |
[42] |
Fan D, Li J, Zheng B, et al. Enriched environment attenuates surgery-induced impairment of learning, memory, and neurogenesis possibly by preserving BDNF expression[J]. Mol Neurobiol, 2016, 53(1): 344-354.
doi: 10.1007/s12035-014-9013-1 pmid: 25432890 |
[43] |
Alwis DS, Rajan R. Environmental enrichment and the sensory brain: The role of enrichment in remediating brain injury[J]. Front Syst Neurosci, 2014, 8: 156.
doi: 10.3389/fnsys.2014.00156 pmid: 25228861 |
[44] |
Harvey CD, Collman F, Dombeck DA, et al. Intracellular dynamics of hippocampal place cells during virtual navigation[J]. Nature, 2009, 461(7266): 941-946.
doi: 10.1038/nature08499 URL |
[45] |
Okonkwo OC, Xu G, et al. Cerebral blood flow is diminished in asymptomatic middle-aged adults with maternal history of Alzheimer's disease[J]. Cereb Cortex, 2014, 24(4): 978-988.
doi: 10.1093/cercor/bhs381 pmid: 23236200 |
[46] |
Waterhouse EG, An JJ, Orefice LL, et al. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission[J]. J Neurosci, 2012, 32(41): 14318-14330.
doi: 10.1523/JNEUROSCI.0709-12.2012 pmid: 23055503 |
[47] |
Faria AL, Andrade A, Soares L, et al. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients[J]. J Neuroeng Rehabil, 2016, 13(1): 96.
pmid: 27806718 |
[48] |
Hua M, Min J. Postoperative cognitive dysfunction and the protective effects of enriched environment: A systematic review[J]. Neurodegener Dis, 2020, 20(4): 113-122.
doi: 10.1159/000513196 pmid: 33601385 |
[1] | 张佳楠, 孙琳琳, 詹潇燕, 李冰. 血清维生素B12与老年2型糖尿病轻度认知功能障碍的关系[J]. 临床荟萃, 2024, 39(1): 34-37. |
[2] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[3] | 王璐璐, 董露露, 江超, 王九雪, 常雅君, 王天俊. 弥散张量成像评估帕金森病合并非运动症状患者脑微结构的研究进展[J]. 临床荟萃, 2023, 38(2): 189-192. |
[4] | 徐阳, 薛凌. H型高血压合并2型糖尿病患者轻度认知功能障碍的影响因素[J]. 临床荟萃, 2023, 38(10): 887-892. |
[5] | 李瑞珍, 李星辉, 曾璟, 姚晓涛, 杨珂欣, 张展. 高血压认知功能障碍机制的研究进展[J]. 临床荟萃, 2023, 38(1): 88-92. |
[6] | 姚瑶, 褚敏. 糖尿病肾病患者认知功能障碍与血清β淀粉样蛋白的关系[J]. 临床荟萃, 2022, 37(9): 813-816. |
[7] | 李梓浩, 吴美妮, 尹昌浩, 吴天娇, 赵维纳. 脑电图在轻度认知功能障碍中的研究进展[J]. 临床荟萃, 2022, 37(8): 748-752. |
[8] | 李钟梅, 冉丽, 蒋依, 郭志伟, 母其文. 老年轻度认知障碍患者睡眠障碍与认知功能的关系[J]. 临床荟萃, 2022, 37(7): 607-611. |
[9] | 曲伊平, 梁慧杰, 陈允恩. 重复经颅磁刺激治疗青少年抑郁症认知功能损害的研究进展[J]. 临床荟萃, 2022, 37(10): 957-960. |
[10] | 王延延, 郝又国, 潘广艳. 脑性瘫痪患儿认知功能障碍的研究进展[J]. 临床荟萃, 2021, 36(11): 1046-1051. |
[11] | 原倩1,刘福珍2,朱西琪2. 脑小血管病的研究进展[J]. 临床荟萃, 2020, 35(5): 462-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||