[1] |
Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease[J]. Clin Biochem, 2019, 72:87-89.
doi: S0009-9120(19)30153-5
pmid: 30954437
|
[2] |
Sackmann V, Ansell A, Sackmann C, et al. Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells[J]. Neurobiol Aging, 2017, 60:173-182.
doi: S0197-4580(17)30278-6
pmid: 28969867
|
[3] |
King E, O'Brien JT, Donaghy P, et al. Peripheral inflammation in prodromal Alzheimer's and Lewy body dementias[J]. J Neurol Neurosurg Psychiatry, 2018, 89(4):339-345.
doi: 10.1136/jnnp-2017-317134
pmid: 29248892
|
[4] |
Li C, Bian Y, Feng Y, et al. Neuroprotective effects of BHDPC, a novel neuroprotectant, on experimental stroke by modulating microglia polarization[J]. ACS Chem Neurosci, 2019, 10(5):2434-2449.
doi: 10.1021/acschemneuro.8b00713
pmid: 30839193
|
[5] |
Petitto JM, Cushman JD, Huang Z. Effects of brain-derived IL-2 deficiency and the development of autoimmunity on spatial learning and fear conditioning[J]. J Neurol Disord, 2015, 3(1):196.
|
[6] |
Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M, et al. Regulatory T cells participate in the recovery of ischemic stroke patients[J]. BMC Neurol, 2020, 20(1):68.
doi: 10.1186/s12883-020-01648-w
pmid: 32111174
|
[7] |
Bairamian D, Sha S, Rolhion N, et al. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer's disease[J]. Mol Neurodegener, 2022, 17(1):19.
doi: 10.1186/s13024-022-00522-2
pmid: 35248147
|
[8] |
Pol JG, Caudana P, Paillet J, et al. Effects of interleukin-2 in immunostimulation and immunosuppression[J]. J Exp Med, 2020, 217(1):e20191247.
doi: 10.1084/jem.20191247
URL
|
[9] |
Alves S, Churlaud G, Audrain M, et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice[J]. Brain, 2017, 140(3):826-842.
doi: 10.1093/brain/aww330
pmid: 28003243
|
[10] |
Kim J, Yoon H, Chung DE, et al. miR-186 is decreased in aged brain and suppresses BACE1 expression[J]. J Neurochem, 2016, 137(3):436-445.
doi: 10.1111/jnc.13507
pmid: 26710318
|
[11] |
Yu TW, Lane HY, Lin CH. Novel therapeutic approaches for Alzheimer's disease: An updated review[J]. Int J Mol Sci, 2021, 22(15):8208.
doi: 10.3390/ijms22158208
URL
|
[12] |
Jeong JY, Chung YC, Jin BK. Interleukin-4 and interleukin-13 exacerbate neurotoxicity of prothrombin kringle-2 in cortex in vivo via oxidative stress[J]. Int J Mol Sci, 2019, 20(8):1927.
doi: 10.3390/ijms20081927
URL
|
[13] |
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke[J]. Front Cell Neurosci, 2022, 16:980722.
doi: 10.3389/fncel.2022.980722
URL
|
[14] |
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3):157-172.
doi: 10.1038/s41582-020-00435-y
pmid: 33318676
|
[15] |
Toomey CE, Heywood W, Benson BC, et al. Investigation of pathology, expression and proteomic profiles in human TREM2 variant postmortem brains with and without Alzheimer's disease[J]. Brain Pathol, 2020, 30(4):794-810.
doi: 10.1111/bpa.v30.4
URL
|
[16] |
Qin Z, Gu M, Zhou J, et al. Triggering receptor expressed on myeloid cells 2 activation downregulates toll-like receptor 4 expression and ameliorates cognitive impairment in the Aβ-induced Alzheimer's disease mouse model[J]. Synapse, 2020, 74(10):e22161.
|
[17] |
Papadimitriou C, Celikkaya H, Cosacak MI, et al. 3D culture method for Alzheimer's disease modeling reveals interleukin-4 rescues Aβ42-induced loss of human neural stem cell plasticity[J]. Dev Cell, 2018, 46(1):85-101.e8.
doi: S1534-5807(18)30459-3
pmid: 29974866
|
[18] |
Li Z, Liu F, Ma H, et al. Age exacerbates surgery-induced cognitive impairment and neuroinflammation in Sprague-Dawley rats:The role of IL-4[J]. Brain Res, 2017, 1665:65-73.
doi: 10.1016/j.brainres.2017.04.004
URL
|
[19] |
Pu H, Ma C, Zhao Y, et al. Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury[J]. J Cereb Blood Flow Metab, 2021, 41(11):2870-2886.
doi: 10.1177/0271678X211028680
URL
|
[20] |
Huynh QS, Elangovan S, Holsinger RMD. Non-pharmacological therapeutic options for the treatment of Alzheimer's disease[J]. Int J Mol Sci, 2022, 23(19):11037.
doi: 10.3390/ijms231911037
URL
|
[21] |
Heyen JR, Ye S, Finck BN, et al. Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-kappaB[J]. Brain Res Mol Brain Res, 2000, 77(1):138-147.
doi: 10.1016/S0169-328X(00)00042-5
URL
|
[22] |
Sun P, Zhou W, Yue H, et al. Compound AD110 acts as therapeutic management for Alzheimer's disease and stroke in mouse and rat models[J]. ACS Chem Neurosci, 2020, 11(6):929-938.
doi: 10.1021/acschemneuro.9b00651
pmid: 32105445
|
[23] |
Magalhães CA, Carvalho MDG, Sousa LP, et al. Alzheimer's disease and cytokine IL-10 gene polymorphisms: Is there an association?[J]. Arq Neuropsiquiatr, 2017, 75(9):649-656.
doi: 10.1590/0004-282x20170110
URL
|
[24] |
Patel RA, Wharton W, Bay AA, et al. Association between anti-inflammatory interleukin-10 and executive function in African American women at risk for Alzheimer's disease[J]. J Clin Exp Neuropsychol, 2020, 42(7):647-659.
doi: 10.1080/13803395.2020.1798879
URL
|
[25] |
Newcombe EA, Camats-Perna J, Silva ML, et al. Inflammation:The link between comorbidities, genetics, and Alzheimer's disease[J]. J Neuroinflammation, 2018, 15(1):276.
doi: 10.1186/s12974-018-1313-3
|
[26] |
Saxton RA, Tsutsumi N, Su LL, et al. Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10[J]. Science, 2021, 371(6535):eabc8433.
doi: 10.1126/science.abc8433
URL
|