Clinical Focus ›› 2023, Vol. 38 ›› Issue (4): 364-368.doi: 10.3969/j.issn.1004-583X.2023.04.014
Previous Articles Next Articles
Received:
2022-10-31
Online:
2023-04-20
Published:
2023-06-06
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.04.014
[1] |
Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy[J]. Front Immunol, 2020, 11: 583687.
doi: 10.3389/fimmu.2020.583687 URL |
[2] |
Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4):942.
doi: 10.3390/ijms19040942 URL |
[3] |
Wu H, Wang M, Li X, et al. The metaflammatory and immunometabolic role of macrophages and microglia in diabetic retinopathy[J]. Hum Cell, 2021, 34(6): 1617-1628.
doi: 10.1007/s13577-021-00580-6 pmid: 34324139 |
[4] |
Karlstetter M, Ebert S, Langmann T. Microglia in the healthy and degenerating retina: Insights from novel mouse models[J]. Immunobiology, 2010, 215(9-10): 685-691.
doi: 10.1016/j.imbio.2010.05.010 pmid: 20573418 |
[5] |
Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: Just bystander or target for therapy[J]. Prog Retin Eye Res, 2015, 45: 30-57.
doi: 10.1016/j.preteyeres.2014.11.004 pmid: 25476242 |
[6] |
Lynch MA. The multifaceted profile of activated microglia[J]. Mol Neurobiol, 2009, 40(2): 139-156.
doi: 10.1007/s12035-009-8077-9 pmid: 19629762 |
[7] |
Bonham LW, Sirkis DW, Yokoyama JS. The transcriptional landscape of microglial genes in aging and neurodegenerative disease[J]. Front Immunol, 2019, 10: 1170.
doi: 10.3389/fimmu.2019.01170 pmid: 31214167 |
[8] |
Hammond TR, Dufort C, Dissing-Olesen L, et al. Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex Cell-State changes[J]. Immunity, 2019, 50(1): 253-271.
doi: S1074-7613(18)30485-0 pmid: 30471926 |
[9] |
O'Koren EG, Yu C, Klingeborn M, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration[J]. Immunity, 2019, 50(3): 723-737.
doi: S1074-7613(19)30073-1 pmid: 30850344 |
[10] |
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020, 11: 564077.
doi: 10.3389/fimmu.2020.564077 URL |
[11] |
Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed[J]. J Neuroinflammation, 2014, 11: 98.
doi: 10.1186/1742-2094-11-98 |
[12] |
Arroba AI, Alcalde-Estevez E, García-Ramírez M, et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice[J]. Biochim Biophys Acta, 2016, 1862(9): 1663-1674.
doi: 10.1016/j.bbadis.2016.05.024 pmid: 27267343 |
[13] | Cardona SM, Mendiola AS, Yang YC, et al. Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina[J]. ASN Neuro, 2015, 7(5):1759091415608204. |
[14] |
Boeck M, Thien A, Wolf J, et al. Temporospatial distribution and transcriptional profile of retinal microglia in the oxygen-induced retinopathy mouse model[J]. Glia, 2020, 68(9): 1859-1873.
doi: 10.1002/glia.23810 pmid: 32150307 |
[15] |
Xu W, Hu Z, Lv Y, et al. Microglial density determines the appearance of pathological neovascular tufts in oxygen-induced retinopathy[J]. Cell Tissue Res, 2018, 374(1): 25-38.
doi: 10.1007/s00441-018-2847-5 pmid: 29767277 |
[16] |
Hu Z, Mao X, Chen M, et al. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy[J]. Diabetes, 2022, 71(4): 762-773.
doi: 10.2337/db21-0551 pmid: 35061025 |
[17] |
Hsieh CF, Liu CK, Lee CT, et al. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation[J]. Sci Rep, 2019, 9(1):840.
doi: 10.1038/s41598-018-37215-0 |
[18] |
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes[J]. Free Radic Biol Med, 2011, 50(5): 567-575.
doi: 10.1016/j.freeradbiomed.2010.12.006 URL |
[19] |
Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy[J]. Exp Mol Pathol, 2003, 75(1): 95-108.
pmid: 12834631 |
[20] |
Dong N, Chang L, Wang B, et al. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-α expression in rat microglia via p38, ERK, and NF-κB pathways[J]. Mol Vis, 2014, 20: 616-628.
pmid: 24826069 |
[21] |
Zhang T, Ouyang H, Mei X, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibitng hyperglycemia-mediated ERK1/2-NF-κB signaling pathway[J]. FASEB J, 2019, 33(11): 11776-11790.
doi: 10.1096/fsb2.v33.11 URL |
[22] |
Yu Z, Zhang T, Gong C, et al. Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway[J]. Sci Rep, 2016, 6: 34306.
doi: 10.1038/srep34306 pmid: 27678303 |
[23] |
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[J]. Sci Transl Med, 2020, 12(555):eaay1371.
doi: 10.1126/scitranslmed.aay1371 URL |
[24] |
Yang LP, Sun HL, Wu LM, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2009, 50(5): 2319-2327.
doi: 10.1167/iovs.08-2642 URL |
[25] |
Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181-1194.
doi: 10.1007/s12035-014-9070-5 pmid: 25598354 |
[26] |
Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms[J]. Nat Neurosci, 2018, 21(6): 779-786.
doi: 10.1038/s41593-018-0145-x pmid: 29735982 |
[27] |
Chen T, Zhu W, Wang C, et al. ALKBH5-Mediated m6A modification of A20 regulates microglia polarization in diabetic retinopathy[J]. Front Immunol, 2022, 13: 813979.
doi: 10.3389/fimmu.2022.813979 URL |
[28] |
Xie H, Zhang C, Liu D, et al. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy[J]. Diabetologia, 2021, 64(1): 211-225.
doi: 10.1007/s00125-020-05299-x pmid: 33104828 |
[29] |
Jo DH, Yun JH, Cho CS, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy[J]. Glia, 2019, 67(2): 321-331.
doi: 10.1002/glia.23542 pmid: 30444022 |
[30] |
Kusari J, Zhou S, Padillo E, et al. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5152-5159.
doi: 10.1167/iovs.07-0427 URL |
[31] | Sohn EH, van Dijk HW, Jiao C, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus[J]. Proc Natl Acad Sci U S A, 2016, 113(19): E2655-2664. |
[32] |
Altmann C, Schmidt M. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1):110.
doi: 10.3390/ijms19010110 URL |
[33] |
Gu L, Xu H, Wang F, et al. Erythropoietin exerts a neuroprotective function against glutamate neurotoxicity in experimental diabetic retina[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 8208-8222.
doi: 10.1167/iovs.14-14435 URL |
[34] |
Haga A, Takahashi E, Inomata Y, et al. Differentiated expression patterns and phagocytic activities of type 1 and 2 microglia[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2814-2823.
doi: 10.1167/iovs.15-18509 URL |
[35] |
Serini S, Calviello G. Reduction of oxidative/nitrosative stress in brain and its involvement in the neuroprotective effect of n-3 PUFA in Alzheimer's Disease[J]. Curr Alzheimer Res, 2016, 13(2): 123-134.
pmid: 26391044 |
[36] |
Roche SL, Wyse-Jackson AC, Gómez-Vicente V, et al. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling[J]. PLoS One, 2016, 11(11): e0165197.
doi: 10.1371/journal.pone.0165197 URL |
[37] |
Al-Dosary DI, Alhomida AS, Ola MS. Protective effects of dietary flavonoids in diabetic induced retinal neurodegeneration[J]. Curr Drug Targets, 2017, 18(13): 1468-1476.
doi: 10.2174/1389450117666161003121304 pmid: 27697035 |
[38] |
Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy[J]. J Neuroinflammation, 2015, 12: 141.
doi: 10.1186/s12974-015-0368-7 URL |
[39] |
Scholz R, Sobotka M, Caramoy A, et al. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration[J]. J Neuroinflammation, 2015, 12: 209.
doi: 10.1186/s12974-015-0431-4 URL |
[40] |
Zhang J, Li L, Xiu F. Sesamin suppresses high glucose-induced microglial inflammation in the retina in vitro and in vivo[J]. J Neurophysiol, 2022, 127(2): 405-411.
doi: 10.1152/jn.00466.2021 pmid: 35020533 |
[41] |
Fang M, Wan W, Li Q, et al. Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-κB p65 mediated modulation of microglia polarization[J]. Life Sci, 2021, 277: 119567.
doi: 10.1016/j.lfs.2021.119567 URL |
[1] | Zhang Xinxin, Liu Guoqing, Wang Beibei. Extreme thrombocytosis caused by diabetic ketoacidosis: A case report and literature review [J]. Clinical Focus, 2023, 38(8): 719-721. |
[2] | . [J]. Clinical Focus, 2023, 38(6): 564-568. |
[3] | . [J]. Clinical Focus, 2023, 38(6): 569-572. |
[4] | Li Huifang, Miao Xia. Prediction of thyroid hormone level on risk of type 2 diabetes nephropathy [J]. Clinical Focus, 2023, 38(2): 137-142. |
[5] | Ju Yan, Guo Peng, Wu Botao, Liu Xinyu. Correlation between ratio of salivary uric acid to blood uric acid and diabetic peripheral neuropathy [J]. Clinical Focus, 2023, 38(1): 37-41. |
[6] | He Feng, Nin Lu, Luo Gao, Yang Ruifei, Li Fanfan, Cheng Xiaoqiong, An Binbin, Li Jingjuan, Liu Yuanyuan, Guo Qian, Wang Jinyang. Correlation of Chinese visceral adipose index and visceral fat area with diabetic nephropathy and their warning values [J]. Clinical Focus, 2022, 37(12): 1089-1093. |
[7] | . [J]. Clinical Focus, 2022, 37(12): 1148-1152. |
[8] | Yao Yao, Chu Min. Relationship between serum amyloid β-protein and cognitive dysfunction in patients with diabetic kidney disease [J]. Clinical Focus, 2022, 37(9): 813-816. |
[9] | . [J]. Clinical Focus, 2022, 37(5): 467-471. |
[10] | Gao Shixin, Song Bing, Shi Kexin. Diagnosis value of serum lipoprotein α, cystatin-C and uric acid on early diabetic nephropathy [J]. Clinical Focus, 2022, 37(3): 248-252. |
[11] | Wang Desheng, Sun Zhigang, Ma Zhoupeng. Correlation of serum high-sensitivity C-reactive protein and urine microalbumin/creatinine and retinal lesions in diabetic [J]. Clinical Focus, 2022, 37(3): 253-256. |
[12] | . [J]. Clinical Focus, 2022, 37(2): 178-181. |
[13] | Liu Lunzhi, Deng Lu, Zhang Mingxia. Effects of angiotensin Ⅱ type 1 receptor blockers on urinary nephrin and Beclin-1 mRNA excretion in urine of patients with early diabetic nephropathy [J]. Clinical Focus, 2021, 36(11): 1005-1008. |
[14] | . [J]. Clinical Focus, 2021, 36(11): 1029-1033. |
[15] | . [J]. Clinical Focus, 2021, 36(11): 1034-1040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||