Clinical Focus ›› 2021, Vol. 36 ›› Issue (9): 850-855.doi: 10.3969/j.issn.1004-583X.2021.09.017
Previous Articles Next Articles
Received:
2021-05-10
Online:
2021-09-20
Published:
2021-10-05
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.09.017
[1] |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100):1211-1259.
doi: 10.1016/S0140-6736(17)32154-2 URL |
[2] | Hou JH, Zhu HX, Zhou ML, et al. Changes in the spectrum of kidney diseases: An analysis of 40, 759 biopsy-proven cases from 2003 to 2014 in China[J]. Kidney Dis (Basel), 2018, 4(1):10-19. |
[3] |
Cano-Megías M, Guisado-Vasco P, Bouarich H, et al. Coronary calcification as a predictor of cardiovascular mortality in advanced chronic kidney disease: A prospective long-term follow-up study[J]. BMC Nephrol, 2019, 20(1):188.
doi: 10.1186/s12882-019-1367-1 pmid: 31138150 |
[4] | Cano-Megías M, Bouarich H, Guisado-Vasco P, et al. Coronary artery calcification in patients with diabetes mellitus and advanced chronic kidney disease[J]. Endocrinol Diabetes Nutr (Engl Ed), 2019, 66(5):297-304. |
[5] |
Guo J, Erqou SA, Miller RG, et al. The role of coronary artery calcification testing in incident coronary artery disease risk prediction in type 1 diabetes[J]. Diabetologia, 2019, 62(2):259-268.
doi: 10.1007/s00125-018-4764-2 URL |
[6] |
Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism[J]. Int J Mol Sci, 2020, 21(8):2685.
doi: 10.3390/ijms21082685 URL |
[7] |
Baby D, Upadhyay M, Joseph MD, et al. Calciphylaxis and its diagnosis: A review[J]. J Family Med Prim Care, 2019, 8(9):2763-2767.
doi: 10.4103/jfmpc.jfmpc_588_19 URL |
[8] | Manzoor S, Ahmed S, Ali A, et al. Progression of medial arterial calcification in CKD[J]. Kidney Int Rep, 2018, 3(6):1328-1335. |
[9] |
Cozzolino M, Ciceri P, Galassi A, et al. The Key role of phosphate on vascular calcification[J]. Toxins (Basel), 2019, 11(4):213.
doi: 10.3390/toxins11040213 URL |
[10] |
Voelkl J, Tuffaha R, Luong TTD, et al. Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF-κB[J]. J Am Soc Nephrol, 2018, 29(6):1636-1648.
doi: 10.1681/ASN.2017050492 pmid: 29654213 |
[11] |
Voelkl J, Lang F, Eckardt KU, et al. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia[J]. Cell Mol Life Sci, 2019, 76(11):2077-2091.
doi: 10.1007/s00018-019-03054-z pmid: 30887097 |
[12] |
Zhang S, Xu J, Feng Y, et al. Extracellular acidosis suppresses calcification of vascular smooth muscle cells by inhibiting calcium influx via L-type calcium channels[J]. Clin Exp Hypertens, 2018, 40(4):370-377.
doi: 10.1080/10641963.2017.1384482 URL |
[13] |
Khalid S, Yamazaki H, Socorro M, et al. Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (Pi)-induced mineralization of osteogenic cells[J]. Free Radic Biol Med, 2020, 153:103-111.
doi: 10.1016/j.freeradbiomed.2020.04.008 URL |
[14] |
Balogh E, Tóth A, Méhes G, et al. Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an HIF-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6):1088-1099.
doi: 10.1161/ATVBAHA.119.312509 pmid: 31070451 |
[15] |
Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective[J]. Cell, 2019, 176(1-2):11-42.
doi: S0092-8674(18)31260-1 pmid: 30633901 |
[16] |
Wang J, Sun YT, Xu TH, et al. MicroRNA-30b regulates high phosphorus level-induced autophagy in vascular smooth muscle cells by targeting BECN1[J]. Cell Physiol Biochem, 2017, 42(2):530-536.
doi: 10.1159/000477602 URL |
[17] |
Xu TH, Qiu XB, Sheng ZT, et al. Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy[J]. J Cell Physiol, 2019, 234(8):14306-14318.
doi: 10.1002/jcp.v234.8 URL |
[18] |
Peng YQ, Xiong D, Lin X, et al. Oestrogen inhibits arterial calcification by promoting autophagy[J]. Sci Rep, 2017, 7(1):3549.
doi: 10.1038/s41598-017-03801-x URL |
[19] |
Liu QF, Ye JM, Yu LX, et al. Plasma s-Klotho is related to kidney function and predicts adverse renal outcomes in patients with advanced chronic kidney disease[J]. J Investig Med, 2018, 66(3):669-675.
doi: 10.1136/jim-2017-000560 URL |
[20] |
Erben RG. α-Klotho's effects on mineral homeostasis are fibroblast growth factor-23 dependent[J]. Curr Opin Nephrol Hypertens, 2018, 27(4):229-235.
doi: 10.1097/MNH.0000000000000415 URL |
[21] | Chen YX, Huang C, Duan ZB, et al. Klotho/FGF23 axis mediates high phosphate-induced vascular calcification in vascular smooth muscle cells via Wnt7b/β-catenin pathway[J]. Kaohsiung J Med Sci, 2019, 35(7):393-400. |
[22] |
Borst O, Schaub M, Walker B, et al. Pivotal role of serum- and glucocorticoid-inducible kinase 1 in vascular inflammation and atherogenesis[J]. Arterioscler Thromb Vasc Biol, 2015, 35(3):547-557.
doi: 10.1161/ATVBAHA.114.304454 URL |
[23] |
Schelski N, Luong TTD, Lang F, et al. SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18[J]. Pflugers Arch, 2019, 471(6):889-899.
doi: 10.1007/s00424-019-02256-5 URL |
[24] |
Voelkl J, Luong TT, Tuffaha R, et al. SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling[J]. J Clin Invest, 2018, 128(7):3024-3040.
doi: 10.1172/JCI96477 pmid: 29889103 |
[25] |
Avila M, Mora C, Prado MDC, et al. Osteoprotegerin is the strongest predictor for progression of arterial calcification in peritoneal dialysis patients[J]. Am J Nephrol, 2017, 46(1):39-46.
doi: 10.1159/000477380 URL |
[26] |
Hou JS, Lin YL, Wang CH, et al. Serum osteoprotegerin is an independent marker of central arterial stiffness as assessed using carotid-femoral pulse wave velocity in hemodialysis patients: A cross sectional study[J]. BMC Nephrol, 2019, 20(1):184.
doi: 10.1186/s12882-019-1374-2 URL |
[27] | Elsaeed AM, Ibrahiem AH, Ali AA. Matrix metalloproteinase 2 and osteoprotegrin as new markers of increased atherosclerotic risk in Egyptian patients with chronic kidney disease[J]. Egypt J Immunol, 2017, 24(1):153-164. |
[28] |
Figurek A, Rroji M, Spasovski G. Sclerostin: A new biomarker of CKD-MBD[J]. Int Urol Nephrol, 2020, 52(1):107-113.
doi: 10.1007/s11255-019-02290-3 URL |
[29] | Lips L, de Roij van Zuijdewijn CLM, Ter Wee PM, et al. Serum sclerostin: Relation with mortality and impact of hemodiafiltration[J]. Nephrol Dial Transplant, 2017, 32(7):1217-1223. |
[30] |
Pelletier S, Confavreux CB, Haesebaert J, et al. Serum sclerostin: The missing link in the bone-vessel cross-talk in hemodialysis patients[J]. Osteoporos Int, 2015, 26(8):2165-2174.
doi: 10.1007/s00198-015-3127-9 pmid: 25910747 |
[31] |
Zhao F, Wu Y, Yang W, et al. Inhibition of vascular calcification by microRNA-155-5p is accompanied by the inactivation of TGF-β1/Smad2/3 signaling pathway[J]. Acta Histochem, 2020, 122(4):151551.
doi: 10.1016/j.acthis.2020.151551 URL |
[32] | Lin X, Zhan JK, Zhong JY, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs[J]. Aging (Albany NY), 2019, 11(2):523-535. |
[33] |
Townsend RR. Arterial stiffness in CKD: A review[J]. Am J Kidney Dis, 2019, 73(2):240-247.
doi: S0272-6386(18)30649-8 pmid: 29908694 |
[34] |
Bouma-de Krijger A, van Ittersum FJ, Hoekstra T, et al. Short-term effects of sevelamer-carbonate on fibroblast growth factor 23 and pulse wave velocity in patients with normophosphataemic chronic kidney disease stage 3[J]. Clin Kidney J, 2019, 12(5):678-685.
doi: 10.1093/ckj/sfz027 pmid: 31584563 |
[35] |
Wu M, Tang RN, Liu H, et al. Cinacalcet ameliorates aortic calcification in uremic rats via suppression of endothelial-to-mesenchymal transition[J]. Acta Pharmacol Sin, 2016, 37(11):1423-1431.
doi: 10.1038/aps.2016.83 URL |
[36] |
Wolf M, Block GA, Chertow GM, et al. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis[J]. Clin Kidney J, 2019, 13(1):75-84.
doi: 10.1093/ckj/sfz034 URL |
[37] |
Hildebrand S, Cunningham J. Is there a role for bisphosphonates in vascular calcification in chronic kidney disease?[J]. Bone, 2021, 142:115751.
doi: 10.1016/j.bone.2020.115751 pmid: 33188959 |
[38] | Perelló J, Ferrer MD, Del Mar Pérez M, et al. Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis[J]. Br J Pharmacol, 2020, 177(19):4400-4415. |
[39] |
Perelló J, Joubert PH, Ferrer MD, et al. First-time-in-human randomized clinical trial in healthy volunteers and haemodialysis patients with SNF472, a novel inhibitor of vascular calcification[J]. Br J Clin Pharmacol, 2018, 84(12):2867-2876.
doi: 10.1111/bcp.13752 pmid: 30280390 |
[40] |
Salcedo C, Joubert PH, Ferrer MD, et al. A phase 1b randomized, placebo-controlled clinical trial with SNF472 in haemodialysis patients[J]. Br J Clin Pharmacol, 2019, 85(4):796-806.
doi: 10.1111/bcp.v85.4 URL |
[41] |
Raggi P, Bellasi A, Bushinsky D, et al. Slowing progression of cardiovascular calcification with snf472 in patients on hemodialysis: Results of a randomized phase 2b study[J]. Circulation, 2020, 141(9):728-739.
doi: 10.1161/CIRCULATIONAHA.119.044195 URL |
[1] | . [J]. Clinical Focus, 2024, 39(2): 183-187. |
[2] | Yang Xingmeng, Ma Xiaoying, Sheng Yuping, Liu Ye, Zhang Haoran, Xu Haiping, Wang Na, Sun Fuyun. Correlation between homocysteine and abdominal aortic calcification in non-dialysis patients with stage 5 chronic kidney disease [J]. Clinical Focus, 2024, 39(1): 30-33. |
[3] | Dong Hui, Huang Wenhui, Zhao Hui, Qian Rui. Adult Bartter syndrome complicated with acute exacerbation of chronic renal insufficiency: A case report [J]. Clinical Focus, 2023, 38(11): 1022-1026. |
[4] | Liu Yan, Liu Qiong, Liang Xiaomei, Liu Bing. Secondary infection of spontaneous perirenal hemorrhage with fever as the main symptom: A case report and literature review [J]. Clinical Focus, 2023, 38(9): 823-826. |
[5] | Wang Tao, Gao Yuwei, Wang Xinghua, Hu Xiuhong, Cui Hongrui, Xu Baozhen, Yang Hongjuan. Correlation of anti-phospholipase A2 receptor antibody with idiopathic membranous nephropathy [J]. Clinical Focus, 2023, 38(7): 606-612. |
[6] | Gao Qinyu, Bao Beiyan, Jin Yan, Zhao Yu. Analysis of clinical features and prognostic factors of IgA nephropathy complicated with depression [J]. Clinical Focus, 2023, 38(6): 510-515. |
[7] | Wang Lingling, Wu Jinlan, Wu Wei, Shen Shipeng, Chi Yanqing, Liu Maodong. A meta-analysis of the renal protective effects of vitamin D and its analogues in non dialysis patients with chronic kidney disease [J]. Clinical Focus, 2022, 37(12): 1081-1088. |
[8] | Wang Pengrui, Chen Huaqian, Yang Tao, Zhao Li, Li Peng. The effect of serum intact parathyroid hormone level on the maturation of autogeneous arteriovenous fistula [J]. Clinical Focus, 2022, 37(12): 1094-1098. |
[9] | Tong Tian, Wang Ruiying, Zhang Lihui, Liu Zhihong, Luo Jianqin, Zhao Zhansheng. Gitelman syndrome with normomagnesemia: A case report and literature review [J]. Clinical Focus, 2022, 37(11): 1031-1036. |
[10] | . [J]. Clinical Focus, 2022, 37(11): 1053-1056. |
[11] | . [J]. Clinical Focus, 2022, 37(9): 855-859. |
[12] | Zhou Ren, Chen Yating, Zhang Yong. Efficacy and safety of Roxadustat on renal anemia in hemodialysis patients:A meta-analysis [J]. Clinical Focus, 2022, 37(4): 305-310. |
[13] | Gao Pengli, Chen Lili, Tian Fen, Zhang Jiaqian, Chen Yipeng, Qi Xiaojing, Xing Guangqun. Impact of body mass index in the clinicopathology and prognosis of patients with IgA nephropathy [J]. Clinical Focus, 2022, 37(3): 234-242. |
[14] | Li Yingying, Li Ting, Zhang Ming, Fan Minghua, Xing Guangqun. Monitoring significance of CD4+ T lymphocyte count on evaluating frailty status of chronic renal failure in patients [J]. Clinical Focus, 2022, 37(3): 243-247. |
[15] | Li Wenzhe, Shang Jinchun, Li Chunmei, Tian Fen, Li Jun, Cui Li, Xing Guangqun. Risk factors of cerebral hemorrhage in uremic patients on regular hemodialysis [J]. Clinical Focus, 2022, 37(1): 20-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||