临床荟萃 ›› 2023, Vol. 38 ›› Issue (3): 273-278.doi: 10.3969/j.issn.1004-583X.2023.03.015
收稿日期:
2022-10-20
出版日期:
2023-03-20
发布日期:
2023-05-11
通讯作者:
刘天祥
E-mail:tianxiangliuliu@163.com
基金资助:
Received:
2022-10-20
Online:
2023-03-20
Published:
2023-05-11
摘要:
超级增强子(super-enhancers,SEs)可以通过调控靶基因的转录,从而在肿瘤发生发展中发挥关键作用。靶向抑制SEs的活性或敲除SEs片段可能成为肿瘤治疗的新方法。本文主要综述了SEs在肿瘤中的作用以及以SEs为靶点的抗肿瘤小分子抑制剂相关研究及临床试验。旨在为研发新的抗肿瘤药物提供理论依据。
中图分类号:
彭灵智, 祝成楼, 刘天祥. 超级增强子:肿瘤治疗的新靶点[J]. 临床荟萃, 2023, 38(3): 273-278.
抑制剂 | 靶点 | 肿瘤 |
---|---|---|
JQ1 | BRD4 | 前列腺癌[ |
I-BET151 | BRD4 | 急性髓性白血病[ |
BETd-246 | BRD2,BRD3,BRD4 | 三阴性乳腺癌[ |
GS-5829 | BRD2,BRD3,BRD4 | 慢性淋巴细胞性白血病[ |
INCB057643 | BRD2,BRD3,BRD4 | 胰腺癌[ |
INCB054329 | BRD2,BRD3,BRD4 | 卵巢癌[ |
THZ1 | CDK7 | 卵巢癌[ |
THZ2 | CDK7 | 骨肉瘤[ |
SY-1365 | CDK7 | 卵巢癌和乳腺癌[ |
THZ531 | CDK12,CDK13 | 前列腺癌[ |
Lee011 | CDK4, CDK6 | 乳腺癌[ |
GZ17-6.02 | - | 胰腺导管腺癌[ |
SY-1425 | RARα | 急性髓性白血病[ |
表1 在肿瘤治疗中以超级增强子为靶点的小分子抑制剂
抑制剂 | 靶点 | 肿瘤 |
---|---|---|
JQ1 | BRD4 | 前列腺癌[ |
I-BET151 | BRD4 | 急性髓性白血病[ |
BETd-246 | BRD2,BRD3,BRD4 | 三阴性乳腺癌[ |
GS-5829 | BRD2,BRD3,BRD4 | 慢性淋巴细胞性白血病[ |
INCB057643 | BRD2,BRD3,BRD4 | 胰腺癌[ |
INCB054329 | BRD2,BRD3,BRD4 | 卵巢癌[ |
THZ1 | CDK7 | 卵巢癌[ |
THZ2 | CDK7 | 骨肉瘤[ |
SY-1365 | CDK7 | 卵巢癌和乳腺癌[ |
THZ531 | CDK12,CDK13 | 前列腺癌[ |
Lee011 | CDK4, CDK6 | 乳腺癌[ |
GZ17-6.02 | - | 胰腺导管腺癌[ |
SY-1425 | RARα | 急性髓性白血病[ |
抑制剂 | 靶点 | 肿瘤 | 临床试验 |
---|---|---|---|
OTX-015 | BRD2, BRD3, BRD4 | 急性髓系白血病,弥漫大B细胞淋巴瘤,急性淋巴细胞白血病,多发性骨髓瘤 | Ⅰ/Ⅱ期,NCT02303782,撤销 |
急性髓系白血病 | Ⅰ/Ⅱ期,NCT02303782,撤销 | ||
多形性胶质母细胞瘤 | Ⅱ期,NCT02296476,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌 | Ⅰ期,NCT02698176,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌,胰腺导管腺癌 | Ⅰ期,NCT02259114,完成 | ||
急性髓性白血病,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT02698189,终止 | ||
CPI-0610 | BRD4 | 周围神经肿瘤 | Ⅱ期,NCT02986919,撤销 |
多发性骨髓瘤 | Ⅱ期,NCT04603495,招募 | ||
多发性骨髓瘤 | Ⅰ期,NCT02157636,完成 | ||
淋巴瘤 | Ⅰ期,NCT01949883,完成 | ||
I-BET762 | BRD2, BRD3 BRD4 | 复发性或难治性血液系统恶性肿瘤 | Ⅰ期,NCT01943851,完成 |
激素受体阳性(HR+)/人表皮生长因子受体2阴性(HER2-)晚期或转移性乳腺癌 | Ⅱ期,NCT02964507,完成 | ||
实体瘤 | Ⅱ期,NCT03266159,撤销 | ||
去势抵抗性前列腺癌 | Ⅱ期,NCT03150056,招募 | ||
NUT中线癌、小细胞肺癌、非小细胞肺癌、结直肠癌、神经母细胞瘤、去势抵抗性前列腺癌、三阴性乳腺癌、雌激素受体阳性(ER阳性)乳腺癌、MYCN驱动的实体瘤 | Ⅰ期,NCT01587703,完成 | ||
晚期或难治性实体瘤或淋巴瘤 | Ⅰ期,NCT03925428,撤销 | ||
转移性或不可切除性NUT中线癌 | Ⅰ/Ⅱ期,NCT04116359,撤销 | ||
NUT中线癌 | NCT03702036,已失效 | ||
TEN-010 | BRD2, BRD3 BRD4 | NUT中线癌,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT01987362,完成 |
急性髓系白血病,骨髓增生异常综合征 | Ⅰ期,NCT02308761,完成 | ||
弥漫大B细胞淋巴瘤,高级别B细胞淋巴瘤 | Ⅰ期,NCT03255096,完成 | ||
GS-5829 | BRD2,BRD3,BRD4 | 晚期实体瘤,淋巴瘤 | Ⅰ期,NCT02392611,完成 |
晚期雌激素受体阳性HER2阴性乳腺癌 | Ⅰ/Ⅱ期,NCT02983604,终止 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02607228,终止 | ||
ODM207 | BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT0303559,完成 |
INCB057643 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02711137,终止 |
晚期实体瘤 | Ⅰ/Ⅱ期,NCT02959437,完成 | ||
INCB054329 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02431260,终止 |
BMS-986158 | BRD2,BRD3,BRD4 | 小儿实体肿瘤,淋巴瘤,小儿脑瘤 | Ⅰ期,NCT03936465,招募 |
晚期肿瘤 | Ⅰ/Ⅱ期,NCT02419417,招募 | ||
ZEN003694 | BRD2,BRD3,BRD4 | 转移性去势抵抗性前列腺癌 | Ⅰ期,NCT04986423,招募 |
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT04145375,招募 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02711956,完成 | ||
转移性去势抵抗性前列腺癌 | Ⅰ期,NCT02705469,完成 | ||
复发性卵巢、输卵管癌或原发性腹膜癌 | Ⅱ期,NCT05071937,未招募 | ||
三阴性乳腺癌 | Ⅱ期,NCT03901469,未招募 | ||
晚期和难治性实体肿瘤和淋巴瘤 | Ⅰ/Ⅱ期,NCT05053971,未招募 | ||
转移性或复发性恶性实体瘤,复发性铂耐药卵巢癌,难治性卵巢癌 | Ⅰ期, NCT04840589,招募 | ||
进展期/转移性/不可切除的NUT中线癌 | Ⅰ/Ⅱ期,NCT05019716,未招募 | ||
去势抵抗性前列腺癌/转移性前列腺癌/转移性前列腺小细胞癌 | Ⅱ期,NCT04471974,招募 | ||
PLX2853 | PLX2853 | 妇科恶性肿瘤,卵巢恶性肿瘤 | Ⅰ/Ⅱ期,NCT04493619,招募 |
小细胞肺癌,葡萄膜黑色素瘤,卵巢透明细胞癌,非霍奇金淋巴瘤,晚期恶性肿瘤,实体瘤,弥漫性大B细胞淋巴瘤,滤泡淋巴瘤 | Ⅰ/Ⅱ期,NCT03297424,完成 | ||
复发性或难治性急性髓性白血病(AML),骨髓增生异常综合征(MDS) | Ⅱ期,NCT03787498,完成 | ||
转移性去势性前列腺癌 | Ⅰ期,NCT04556617,完成 | ||
BI 894999 | BRD4 | 晚期恶性肿瘤,NUT中线癌 | Ⅰ期,NCT02516553,完成 |
GSK2820151 | BRD2,BRD3,BRD4 | 复发或晚期实体瘤 | Ⅰ期,NCT02630251,终止 |
BAY 1238097 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ期,NCT02369029,终止 |
SY-1365 | CDK7 | 晚期实体瘤,乳腺癌,卵巢癌 | Ⅰ期,NCT03134638,终止 |
THZ531 | CDK12,CDK13 | 卵巢癌 | 肿瘤活检,NCT04555473,招募 |
Lee011 | CDK4, CDK6 | 晚期实体瘤,巨块型肿瘤 | Ⅰ期,NCT02934568,招募 |
晚期实体肿瘤,转移性激素受体阳性乳腺癌 | Ⅰ/Ⅰb期,NCT03775525,招募 | ||
SY-1425 | RARα | 急性髓系白血病,骨髓增生异常综合征 | Ⅱ期,NCT02807558,未招募 |
表2 在肿瘤治疗中以超级增强子为靶点的小分子抑制剂临床试验
抑制剂 | 靶点 | 肿瘤 | 临床试验 |
---|---|---|---|
OTX-015 | BRD2, BRD3, BRD4 | 急性髓系白血病,弥漫大B细胞淋巴瘤,急性淋巴细胞白血病,多发性骨髓瘤 | Ⅰ/Ⅱ期,NCT02303782,撤销 |
急性髓系白血病 | Ⅰ/Ⅱ期,NCT02303782,撤销 | ||
多形性胶质母细胞瘤 | Ⅱ期,NCT02296476,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌 | Ⅰ期,NCT02698176,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌,胰腺导管腺癌 | Ⅰ期,NCT02259114,完成 | ||
急性髓性白血病,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT02698189,终止 | ||
CPI-0610 | BRD4 | 周围神经肿瘤 | Ⅱ期,NCT02986919,撤销 |
多发性骨髓瘤 | Ⅱ期,NCT04603495,招募 | ||
多发性骨髓瘤 | Ⅰ期,NCT02157636,完成 | ||
淋巴瘤 | Ⅰ期,NCT01949883,完成 | ||
I-BET762 | BRD2, BRD3 BRD4 | 复发性或难治性血液系统恶性肿瘤 | Ⅰ期,NCT01943851,完成 |
激素受体阳性(HR+)/人表皮生长因子受体2阴性(HER2-)晚期或转移性乳腺癌 | Ⅱ期,NCT02964507,完成 | ||
实体瘤 | Ⅱ期,NCT03266159,撤销 | ||
去势抵抗性前列腺癌 | Ⅱ期,NCT03150056,招募 | ||
NUT中线癌、小细胞肺癌、非小细胞肺癌、结直肠癌、神经母细胞瘤、去势抵抗性前列腺癌、三阴性乳腺癌、雌激素受体阳性(ER阳性)乳腺癌、MYCN驱动的实体瘤 | Ⅰ期,NCT01587703,完成 | ||
晚期或难治性实体瘤或淋巴瘤 | Ⅰ期,NCT03925428,撤销 | ||
转移性或不可切除性NUT中线癌 | Ⅰ/Ⅱ期,NCT04116359,撤销 | ||
NUT中线癌 | NCT03702036,已失效 | ||
TEN-010 | BRD2, BRD3 BRD4 | NUT中线癌,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT01987362,完成 |
急性髓系白血病,骨髓增生异常综合征 | Ⅰ期,NCT02308761,完成 | ||
弥漫大B细胞淋巴瘤,高级别B细胞淋巴瘤 | Ⅰ期,NCT03255096,完成 | ||
GS-5829 | BRD2,BRD3,BRD4 | 晚期实体瘤,淋巴瘤 | Ⅰ期,NCT02392611,完成 |
晚期雌激素受体阳性HER2阴性乳腺癌 | Ⅰ/Ⅱ期,NCT02983604,终止 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02607228,终止 | ||
ODM207 | BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT0303559,完成 |
INCB057643 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02711137,终止 |
晚期实体瘤 | Ⅰ/Ⅱ期,NCT02959437,完成 | ||
INCB054329 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02431260,终止 |
BMS-986158 | BRD2,BRD3,BRD4 | 小儿实体肿瘤,淋巴瘤,小儿脑瘤 | Ⅰ期,NCT03936465,招募 |
晚期肿瘤 | Ⅰ/Ⅱ期,NCT02419417,招募 | ||
ZEN003694 | BRD2,BRD3,BRD4 | 转移性去势抵抗性前列腺癌 | Ⅰ期,NCT04986423,招募 |
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT04145375,招募 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02711956,完成 | ||
转移性去势抵抗性前列腺癌 | Ⅰ期,NCT02705469,完成 | ||
复发性卵巢、输卵管癌或原发性腹膜癌 | Ⅱ期,NCT05071937,未招募 | ||
三阴性乳腺癌 | Ⅱ期,NCT03901469,未招募 | ||
晚期和难治性实体肿瘤和淋巴瘤 | Ⅰ/Ⅱ期,NCT05053971,未招募 | ||
转移性或复发性恶性实体瘤,复发性铂耐药卵巢癌,难治性卵巢癌 | Ⅰ期, NCT04840589,招募 | ||
进展期/转移性/不可切除的NUT中线癌 | Ⅰ/Ⅱ期,NCT05019716,未招募 | ||
去势抵抗性前列腺癌/转移性前列腺癌/转移性前列腺小细胞癌 | Ⅱ期,NCT04471974,招募 | ||
PLX2853 | PLX2853 | 妇科恶性肿瘤,卵巢恶性肿瘤 | Ⅰ/Ⅱ期,NCT04493619,招募 |
小细胞肺癌,葡萄膜黑色素瘤,卵巢透明细胞癌,非霍奇金淋巴瘤,晚期恶性肿瘤,实体瘤,弥漫性大B细胞淋巴瘤,滤泡淋巴瘤 | Ⅰ/Ⅱ期,NCT03297424,完成 | ||
复发性或难治性急性髓性白血病(AML),骨髓增生异常综合征(MDS) | Ⅱ期,NCT03787498,完成 | ||
转移性去势性前列腺癌 | Ⅰ期,NCT04556617,完成 | ||
BI 894999 | BRD4 | 晚期恶性肿瘤,NUT中线癌 | Ⅰ期,NCT02516553,完成 |
GSK2820151 | BRD2,BRD3,BRD4 | 复发或晚期实体瘤 | Ⅰ期,NCT02630251,终止 |
BAY 1238097 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ期,NCT02369029,终止 |
SY-1365 | CDK7 | 晚期实体瘤,乳腺癌,卵巢癌 | Ⅰ期,NCT03134638,终止 |
THZ531 | CDK12,CDK13 | 卵巢癌 | 肿瘤活检,NCT04555473,招募 |
Lee011 | CDK4, CDK6 | 晚期实体瘤,巨块型肿瘤 | Ⅰ期,NCT02934568,招募 |
晚期实体肿瘤,转移性激素受体阳性乳腺癌 | Ⅰ/Ⅰb期,NCT03775525,招募 | ||
SY-1425 | RARα | 急性髓系白血病,骨髓增生异常综合征 | Ⅱ期,NCT02807558,未招募 |
[1] |
Sur I, Taipale J. The role of enhancers in cancer[J]. Nat Rev Cancer, 2016, 16(8):483-493.
doi: 10.1038/nrc.2016.62 pmid: 27364481 |
[2] |
Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity gene[J]. Cell, 2013, 153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 URL |
[3] |
Kimura H. Histone modifications for human epigenome analysis[J]. J Hum Genet, 2013, 58(7):439-445.
doi: 10.1038/jhg.2013.66 pmid: 23739122 |
[4] |
Villar D, Berthelot C, Aldridge S, et al. Enhancer evolution across 20 mammalian species[J]. Cell, 2015, 160(3):554-566.
doi: 10.1016/j.cell.2015.01.006 pmid: 25635462 |
[5] | 周洋, 施晓敏, 韩澍, 等. SEs的发现与研究进展[J]. 国际生殖健康/计划生育杂志, 2017, 36(2):137-141+159. |
[6] |
Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer[J]. Trends Cancer, 2017, 3(4):269-281.
doi: S2405-8033(17)30061-4 pmid: 28718439 |
[7] | 吴志强, 米泽云. 超级增强子在肿瘤研究中的进展[J]. 遗传, 2019, 41(1):41-51. |
[8] |
Loven J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers[J]. Cell, 2013, 153(2):320-334.
doi: 10.1016/j.cell.2013.03.036 pmid: 23582323 |
[9] |
Hnisz D, Schuijers J, Lin CY, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers[J]. Mol Cell, 2015, 58(2):362-370.
doi: 10.1016/j.molcel.2015.02.014 pmid: 25801169 |
[10] |
Yimlamai D, Fowl BH, Camargo FD. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer[J]. J Hepatol, 2015, 63(6):1491-1501.
doi: 10.1016/j.jhep.2015.07.008 pmid: 26226451 |
[11] |
Nabet B, Broin P, Reyes JM, et al. Deregulation of the Ras-Erk signaling sxis modulates the enhancer landscape[J]. Cell Rep, 2015, 12(8):1300-1313.
doi: 10.1016/j.celrep.2015.06.078 URL |
[12] |
Niederriter AR, Varshney A, Parker SC, et al. Super enhancers in cancers, complex disease, and developmental disorders[J]. Genes, 2015, 6(4):1183-1200.
doi: 10.3390/genes6041183 pmid: 26569311 |
[13] |
Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155(4):934-947.
doi: 10.1016/j.cell.2013.09.053 pmid: 24119843 |
[14] |
Jiang YY, Lin DC, Mayakonda A, et al. Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma[J]. Gut, 2017, 66(8):1358-1368.
doi: 10.1136/gutjnl-2016-311818 URL |
[15] |
Jiang Y, Jiang YY, Xie JJ, et al. Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression[J]. Nat Commun, 2018, 9(1):3619.
doi: 10.1038/s41467-018-06081-9 pmid: 30190462 |
[16] |
Xie JJ, Jiang YY, Jiang Y, et al. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma[J]. Gastroenterology, 2018, 154(8):2137-2151.
doi: S0016-5085(18)30213-0 pmid: 29454790 |
[17] |
Lin X, Spindler TJ, de Souza Fonseca MA, et al. A super-enhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer[J]. IScience, 2019, 17:242-255.
doi: S2589-0042(19)30208-1 pmid: 31307004 |
[18] |
Jiao W, Chen Y, Song H, et al. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis[J]. Oncogene, 2018, 37(20): 2728-2745.
doi: 10.1038/s41388-018-0128-0 pmid: 29511351 |
[19] | 程霄, 杨琼, 谭镇东, 等. 增强子RNA研究现状[J]. 遗传, 2017, 39(9):784-797. |
[20] | Yang YS, Jin X, Li Q, et al. Superenhancer drives a tumor-specific splicing variant of MARCO to promote triple-negative breast cancer progression[J]. Proc Natl Acad Sci U S A, 2022, 119(46): e2207201119. |
[21] |
Pajtler KW, Witt H, Sill M, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups[J]. Cancer Cell, 2015, 27(5):728-743.
doi: 10.1016/j.ccell.2015.04.002 pmid: 25965575 |
[22] |
Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans[J]. Nat Rev Genet, 2012, 13(10):720-731.
doi: 10.1038/nrg3293 pmid: 22986266 |
[23] |
Wang Y, Shen N, Li S, et al. Synergistic therapy for cervical cancer by codelivery of cisplatin and JQ1 inhibiting Plk1-Mutant Trp53 Axis[J]. Nano Lett, 2021, 21(6): 2412-2421.
doi: 10.1021/acs.nanolett.0c04402 pmid: 33705152 |
[24] |
Xu Y, Pachnikova G, Przybilla D, et al. Evaluation of JQ1 combined with docetaxel for the treatment of prostate cancer cells in 2D- and 3D-culture systems[J]. Front Pharmacol, 2022, 13:839620.
doi: 10.3389/fphar.2022.839620 URL |
[25] |
Chen B, Liu X, Li Y, et al. iRGD tumor-penetrating peptide-modified nanodelivery system based on a marine sulfated polysaccharide for enhanced anti-tumor efficiencyagainst breast cancer[J]. Int J Nanomedicine, 2022, 17:617-633.
doi: 10.2147/IJN.S343902 URL |
[26] |
Fourniols T, Maggio V, Rafael D, et al. Colorectal cancer inhibition by BET inhibitor JQ1 is MYC-independent and not improved by nanoencapsulation[J]. Eur J Pharm Biopharm, 2022, 171:39-49.
doi: 10.1016/j.ejpb.2021.10.017 pmid: 34998911 |
[27] |
Pelish HE, Liau BB, Nitulescu II, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML[J]. Nature, 2015, 526(7572):273-276.
doi: 10.1038/nature14904 |
[28] |
Yao Z, Yang S, Zhao H, et al. BET inhibitor I-BET151 sensitizes GBM cells to temozolomide via PUMA induction[J]. Cancer Gene Ther, 2022, 29(10):1528.
doi: 10.1038/s41417-022-00536-4 |
[29] | Guo NH, Zheng JF, Zi FM, et al. I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma[J]. Biosci Rep, 2019, 39(5):BSR20181245. |
[30] |
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer[J]. Pharmacol Res, 2018, 129:156-176.
doi: S1043-6618(17)31403-2 pmid: 29154989 |
[31] |
Choi JE, Verhaegen ME, Yazdani S, et al. Characterizing the therapeutic potential of a potent BET degrader in Merkel mell carcinoma[J]. Neoplasia, 2019, 21(3):322-330.
doi: S1476-5586(18)30532-3 pmid: 30797188 |
[32] |
Bai L, Zhou B, Yang CY, et al. Targeted degradation of BET proteins in triple-negative breast cancer[J]. Cancer Res, 2017, 77(9):2476-2487.
doi: 10.1158/0008-5472.CAN-16-2622 pmid: 28209615 |
[33] |
Kim E, Ten Hacken E, Sivina M, et al. The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment[J]. Leukemia, 2020, 34(6):1588-1598.
doi: 10.1038/s41375-019-0682-7 pmid: 31862959 |
[34] |
Zeybek B, Lopez S, Santin AD. BET inhibitors: Betting on improved outcomes in uterine serous carcinoma[J]. Oncotarget, 2018, 9(84):35470-35471.
doi: 10.18632/oncotarget.26245 pmid: 30464799 |
[35] |
Leal AS, Liu P, Krieger-Burke T, et al. The Bromodomain inhibitor, INCB057643, targets both cancer cells and the tumor microenvironment in two preclinical models of pancreatic cancer[J]. Cancers (Basel), 2020, 13(1):96.
doi: 10.3390/cancers13010096 URL |
[36] |
Deng M, Xu-Monette ZY, Pham LV, et al. Aggressive B-cell lymphoma with MYC/TP53 dual alterations displays distinct clinicopathobiological features and response to novel targeted agents[J]. Mol Cancer Res, 2021, 19(2):249-260.
doi: 10.1158/1541-7786.MCR-20-0466 pmid: 33154093 |
[37] |
Vázquez R, Civenni G, Kokanovic A, et al. Efficacy of novel bromodomain and extraterminal inhibitors in combination with chemotherapy for castration-resistant prostate cancer[J]. Eur Urol Oncol, 2021, 4(3):437-446.
doi: 10.1016/j.euo.2019.07.013 pmid: 31402217 |
[38] |
Ramsey HE, Greenwood D, Zhang S, et al. BET inhibition enhances the antileukemic activity of low-dose Venetoclax in acute myeloid leukemia[J]. Clin Cancer Res, 2021, 27(2):598-607.
doi: 10.1158/1078-0432.CCR-20-1346 pmid: 33148670 |
[39] |
Stubbs MC, Burn TC, Sparks R, et al. The novel bromodomain and extraterminal domain inhibitor INCB054329 induces vulnerabilities in myeloma cells That inform rational combination strategies[J]. Clin Cancer Res, 2019, 25(1):300-311.
doi: 10.1158/1078-0432.CCR-18-0098 pmid: 30206163 |
[40] |
Jauset T, Massó-Vallés D, Martínez-Martín S, et al. BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC[J]. Oncotarget, 2018, 9(27):18734-18746.
doi: 10.18632/oncotarget.24648 pmid: 29721157 |
[41] |
Huang X, Qiu M, Wang T, et al. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy[J]. J Nanobiotechnology, 2022, 20(1):93.
doi: 10.1186/s12951-022-01300-4 |
[42] |
Gao L, Xia S, Zhang K, et al. Gene expression profile of THZ1-treated nasopharyngeal carcinoma cell lines indicates its involvement in the inhibition of the cell cycle[J]. Transl Cancer Res, 2021, 10(1):445-460.
doi: 10.21037/tcr-19-2888 pmid: 35116274 |
[43] | Yang Y, Jiang D, Zhou Z, et al. CDK7 blockade suppresses super-enhancer-associated oncogenes in bladder cancer[J]. Cell Oncol (Dordr), 2021, 44(4):871-887. |
[44] |
Christensen CL, Kwiatkowski N, Abraham BJ, et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor[J]. Cancer Cell, 2014, 26(6):909-922.
doi: S1535-6108(14)00423-1 pmid: 25490451 |
[45] |
Zhang J, Liu W, Zou C, et al. Targeting super-enhancer-associated oncogenes in osteosarcoma with THZ2, a covalent CDK7 inhibitor[J]. Clin Cancer Res, 2020, 26(11):2681-2692.
doi: 10.1158/1078-0432.CCR-19-1418 pmid: 31937612 |
[46] | Huang JR, Qin WM, Wang K, et al. Cyclin-dependent kinase 7 inhibitor THZ2 inhibits the growth of human gastric cancer?in vitro?and?in vivo[J]. Am J Transl Res, 2018, 10(11):3664-3676. |
[47] |
Hu S, Marineau JJ, Rajagopal N, et al. Discovery and characterization of SY-1365, a selective, covalent inhibitor of CDK7[J]. Cancer Res, 2019, 79(13):3479-3491.
doi: 10.1158/0008-5472.CAN-19-0119 pmid: 31064851 |
[48] |
Lei H, Wang Z, Jiang D, et al. CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer[J]. Cell Death Dis, 2021, 12(8):740.
doi: 10.1038/s41419-021-04027-6 pmid: 34315855 |
[49] |
Zhang T, Kwiatkowski N, Olson CM, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors[J]. Nat Chem Biol, 2016, 12(10):876-884.
doi: 10.1038/nchembio.2166 pmid: 27571479 |
[50] |
Geng M, Yang Y, Cao X, et al. Targeting CDK12-mediated transcription regulation in anaplastic thyroid carcinoma[J]. Biochem Biophys Res Commun, 2019, 520(3):544-550.
doi: 10.1016/j.bbrc.2019.10.052 URL |
[51] |
Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): Mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors[J]. Clin Cancer Res, 2017, 23(13):3251-3262.
doi: 10.1158/1078-0432.CCR-16-3157 pmid: 28351928 |
[52] |
Kennedy AL, Vallurupalli M, Chen L, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma[J]. Oncotarget, 2015, 6(30):30178-30193.
doi: 10.18632/oncotarget.4903 pmid: 26337082 |
[53] |
Ghosh C, Paul S, Dandawate P, et al. Super-enhancers: novel target for pancreatic ductal adenocarcinoma[J]. Oncotarget, 2019, 10(16):1554-1571.
doi: 10.18632/oncotarget.26704 pmid: 30899425 |
[54] |
Choi J, Bordeaux ZA, McKeel J, et al. GZ17-6.02 02 inhibits the growth of EGFRvIII+ Glioblastoma[J]. Int J Mol Sci, 2022, 23(8):4174.
doi: 10.3390/ijms23084174 URL |
[55] |
McKeown MR, Johannessen L, Lee E, et al. Antitumor synergy with SY-1425, a selective RARα agonist, and hypomethylating agents in retinoic acid receptor pathway activated models of acute myeloid leukemia[J]. Haematologica, 2019, 104(4):e138-e142.
doi: 10.3324/haematol.2018.192807 URL |
[56] |
Noguchi-Yachide T. BET bromodomain as a target of epigenetic therapy[J]. Chem Pharm Bull (Tokyo), 2016, 64(6):540-547.
doi: 10.1248/cpb.c16-00225 URL |
[57] | 柳克俊, 张智敏, 冉挺, 等. BET bromodomain蛋白小分子抑制剂研究进展[J]. 中国医科大学学报, 2015, 46 (3):264 -271. |
[58] |
Shin HY. Targeting super-enhancers for disease treatment and diagnosis[J]. Mol Cells, 2018, 41(6):506-514.
doi: 10.14348/molcells.2018.2297 pmid: 29754476 |
[59] |
Nakamura Y, Hattori N, Iida N, et al. Targeting of super-enhancers and mutant BRAF can suppress growth of BRAF-mutant colon cancer cells via repression of MAPK signaling pathway[J]. Cancer Lett, 2017, 402:100-109.
doi: S0304-3835(17)30353-1 pmid: 28576751 |
[60] |
Zhu X, Zhang T, Zhang Y, et al. A super-enhancer controls TGF- β signaling in pancreatic cancer through downregulation of TGFBR2[J]. Cell Signal, 2020, 66: 109470.
doi: 10.1016/j.cellsig.2019.109470 URL |
[61] |
Cheng W, Yang Z, Wang S, et al. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures[J]. Eur J Med Chem, 2019, 164:615-639.
doi: S0223-5234(19)30003-0 pmid: 30639897 |
[62] |
Nagaraja S, Vitanza NA, Woo PJ, et al. Transcriptional dependencies in diffuse intrinsic pontine glioma[J]. Cancer Cell, 2017, 31(5):635-652.
doi: S1535-6108(17)30107-1 pmid: 28434841 |
[63] |
Zheng C, Liu M, Fan H. Targeting complexes of super-enhancers is a promising strategy for cancer therapy[J]. Oncol Lett, 2020, 20(3):2557-2566.
doi: 10.3892/ol.2020.11855 pmid: 32782573 |
[64] |
Gao Y, Volegova M, Nasholm N, et al. Synergistic anti-tumor effect of combining selective CDK7 and BRD4 inhibition in neuroblastoma[J]. Front Oncol, 2022, 11:773186.
doi: 10.3389/fonc.2021.773186 URL |
[65] |
Ma X, Kuang X, Xia Q, et al. Covalent CDK7 inhibitor THZ1 inhibits myogenic differentiation[J]. J Cancer, 2018, 9(17):3149-3155.
doi: 10.7150/jca.25395 pmid: 30210638 |
[1] | 陈思晗, 熊虎, 税典雅, 高小瞻, 刘泽伟. 超微血管成像技术诊断乳腺肿瘤的meta分析[J]. 临床荟萃, 2024, 39(2): 108-114. |
[2] | 赵旭辉, 黄小敏, 达德转, 许焱, 崔晓东, 李红玲. 基于生物信息学筛选影响胃癌患者预后的糖酵解相关基因[J]. 临床荟萃, 2024, 39(1): 20-29. |
[3] | 黄赛虎, 龙中洁, 董兴强, 孟祥营, 吴水燕, 柏振江. 血液肿瘤患儿合并脓毒血症的病原学特点及临床特征[J]. 临床荟萃, 2024, 39(1): 38-42. |
[4] | 吕畅, 周利明. TNF-α-308基因多态性与胃癌易感相关性的meta分析[J]. 临床荟萃, 2023, 38(9): 779-787. |
[5] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[6] | 侯有玲, 李奕, 关红玉, 罗红霞. 目标导向液体治疗在脑肿瘤切除术中应用效果的meta分析[J]. 临床荟萃, 2023, 38(8): 686-693. |
[7] | 李亚, 杜涛明, 邱世香, 陈超, 钟立明. 伴有抑郁症状肝癌患者脑功能连接研究[J]. 临床荟萃, 2023, 38(6): 532-536. |
[8] | 王英南, 赵琦, 白海威, 武丹娜, 魏金梅, 李省江, 李锐凌, 张瑞星. 胃癌合并脑梗死的临床特点及危险因素分析[J]. 临床荟萃, 2023, 38(5): 417-422. |
[9] | 周腾腾, 李来有, 刘志敏, 左静. 隧道式和传统PICC穿刺法对导管相关血流感染影响的研究进展[J]. 临床荟萃, 2023, 38(5): 469-472. |
[10] | 陆知非, 王高卿, 高过. 肝门部胆管癌的非手术治疗进展[J]. 临床荟萃, 2023, 38(5): 473-476. |
[11] | 黎恒楠, 黄艳, 赵亚娟, 胡桂才. 血清CTRP5与持续非卧床腹膜透析患者左室舒张功能异常的相关性及其诊断价值[J]. 临床荟萃, 2023, 38(4): 324-329. |
[12] | 罗杰, 吴强, 李忠, 郑硕. 罕见肾上腺神经纤维瘤1例并文献复习[J]. 临床荟萃, 2023, 38(4): 359-363. |
[13] | 祝成楼, 吴琼, 达明绪. 西格列汀治疗2型糖尿病的胰腺癌风险评估:来自随机对照试验的荟萃分析结果[J]. 临床荟萃, 2023, 38(12): 1061-1066. |
[14] | 王军宏, 高振华, 章荣龙, 姬浩民, 赵信科, 达明绪. 1980-2021年胃癌诊断文献相关质量分析——基于Web of Science 数据库的文献计量学分析[J]. 临床荟萃, 2023, 38(12): 1117-1124. |
[15] | 黄小敏, 赵旭辉, 达德转, 马桃梅, 李红玲. EB病毒感染和程序性死亡受体配体1表达在晚期胃癌免疫靶向治疗中的研究进展[J]. 临床荟萃, 2023, 38(11): 1048-1052. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||