临床荟萃 ›› 2023, Vol. 38 ›› Issue (3): 279-284.doi: 10.3969/j.issn.1004-583X.2023.03.016
收稿日期:
2022-10-31
出版日期:
2023-03-20
发布日期:
2023-05-11
通讯作者:
崔轶霞
E-mail:yixia_cyx@126.com
Received:
2022-10-31
Online:
2023-03-20
Published:
2023-05-11
摘要:
类风湿关节炎是一种常见而复杂的自身免疫性疾病,临床上表现为滑膜炎症、血管翳形成、软骨退化和局灶性骨侵蚀,可累及多个系统,伴有许多关节外共病,包括骨质疏松症。骨质疏松症导致的关节疼痛和畸形可引起机体相关功能障碍、运动缺乏,从而造成严重不良后果。本文对类风湿关节炎合并骨质疏松症的发病机制和类风湿关节炎相关治疗药物对骨质疏松症的影响的研究进展进行综述,旨在为临床诊治提供参考。
中图分类号:
邹琳, 崔轶霞, 张娜娜, 陈思荣. 类风湿关节炎合并骨质疏松症发病机制和相关治疗药物对骨质疏松症影响的研究进展[J]. 临床荟萃, 2023, 38(3): 279-284.
[1] |
Tanaka Y. Managing osteoporosis and joint damage in patients with rheumatoid arthritis: An overview[J]. J Clin Med, 2021, 10(6):1241.
doi: 10.3390/jcm10061241 URL |
[2] |
Miao CG, Yang YY, He X, et al. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling[J]. Cell Signal, 2013, 25(10):2069-2078.
doi: 10.1016/j.cellsig.2013.04.002 URL |
[3] |
Cici D, Corrado A, Rotondo C, et al. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis[J]. Int J Mol Sci, 2019, 20(22):5552.
doi: 10.3390/ijms20225552 URL |
[4] |
Zou ML, Chen ZH, Teng YY, et al. The Smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies[J]. Front Mol Biosci, 2021, 8:593310.
doi: 10.3389/fmolb.2021.593310 URL |
[5] |
Bal Z, Kushioka J, Kodama J, et al. BMP and TGFβ use and release in bone regeneration[J]. Turk J Med Sci, 2020, 50(SI-2):1707-1722.
doi: 10.3906/sag-2003-127 URL |
[6] |
Todd GM, Gao Z, Hyvönen M, et al. Secreted BMP antagonists and their role in cancer and bone metastases[J]. Bone, 2020, 137:115455.
doi: 10.1016/j.bone.2020.115455 URL |
[7] |
Kim EH, Suresh M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation[J]. Front Immunol, 2013, 4:20.
doi: 10.3389/fimmu.2013.00020 pmid: 23378844 |
[8] |
Case N, Ma M, Sen B, et al. Beta-catenin levels influence rapid mechanical responses in osteoblasts[J]. J Biol Chem, 2008, 283(43):29196-29205.
doi: 10.1074/jbc.M801907200 pmid: 18723514 |
[9] |
Agas D, Sabbieti MG, Marchetti L, et al. FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts[J]. J Cell Physiol, 2013, 228(11):2149-2158.
doi: 10.1002/jcp.24382 pmid: 23559326 |
[10] |
Damerau A, Gaber T, Ohrndorf S, et al. JAK/STAT activation: A general mechanism for bone development, homeostasis, and regeneration[J]. Int J Mol Sci, 2020, 21(23):9004.
doi: 10.3390/ijms21239004 URL |
[11] |
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology[J]. Exp Mol Med, 2020, 52(8):1185-1197.
doi: 10.1038/s12276-020-0445-6 pmid: 32788655 |
[12] |
Wang H, Li L, Zhang N, et al. Vitamin K2 improves osteogenic differentiation by inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 clone 8 cells[J]. Nutrients, 2022, 14(14):2934.
doi: 10.3390/nu14142934 URL |
[13] | Zhou B, Lin W, Long Y, et al. Notch signaling pathway: Architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1):95. |
[14] | 吴晶艺, 陆欣辰, 陈广洁. Notch信号通路在类风湿关节炎发病机制中的研究进展[J]. 现代免疫学, 2023, 43(2):144-149. |
[15] |
Sekine C, Koyanagi A, Koyama N, et al. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes[J]. Arthritis Res Ther, 2012, 14(2):R45.
doi: 10.1186/ar3758 URL |
[16] |
Su Y, Xing H, Kang J, et al. Role of the hedgehog signaling pathway in rheumatic diseases: An overview[J]. Front Immunol, 2022, 13:940455.
doi: 10.3389/fimmu.2022.940455 URL |
[17] |
Qin S, Sun D, Li H, et al. The effect of SHH-Gli signaling pathway on the synovial fibroblast proliferation in rheumatoid arthritis[J]. Inflammation, 2016, 39(2):503-512.
doi: 10.1007/s10753-015-0273-3 pmid: 26552406 |
[18] | 王雨荷, 刘红, 李艳, 等. Hedgehog-Gli信号通路在骨质疏松发生中作用的研究进展[J]. 中国骨质疏松杂志, 2021, 27(10):1550-1553. |
[19] |
Yang TL, Shen H, Liu A, et al. A road map for understanding molecular and genetic determinants of osteoporosis[J]. Nat Rev Endocrinol, 2020, 16(2):91-103.
doi: 10.1038/s41574-019-0282-7 |
[20] |
Bellavia D, De Luca A, Carina V, et al. Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis[J]. Bone, 2019, 122:52-75.
doi: S8756-3282(19)30053-5 pmid: 30772601 |
[21] |
Liang B, Burley G, Lin S, et al. Osteoporosis pathogenesis and treatment: Existing and emerging avenues[J]. Cell Mol Biol Lett, 2022, 27(1):72.
doi: 10.1186/s11658-022-00371-3 pmid: 36058940 |
[22] |
Zha L, He L, Liang Y, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation[J]. Biomed Pharmacother, 2018, 102:369-374.
doi: S0753-3322(17)36537-X pmid: 29571022 |
[23] |
Zou W, Amcheslavsky A, Takeshita S, et al. TNF-alpha expression is transcriptionally regulated by RANK ligand[J]. J Cell Physiol, 2005, 202(2):371-378.
pmid: 15389596 |
[24] | 颜廷鑫, 王诗军, 姜俊杰, 等. IL-1与骨质疏松研究进展[J]. 中国骨质疏松杂志, 2022, 28(3):460-464. |
[25] |
Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17[J]. Rheumatology (Oxford), 2008, 47(11):1635-1640.
doi: 10.1093/rheumatology/ken363 pmid: 18786965 |
[26] |
Yip RML, Yim CW. Role of interleukin 6 inhibitors in the management of rheumatoid arthritis[J]. J Clin Rheumatol, 2021, 27(8):e516-e524.
doi: 10.1097/RHU.0000000000001293 URL |
[27] |
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis[J]. RMD Open, 2021, 7(1):e001228.
doi: 10.1136/rmdopen-2020-001228 URL |
[28] |
Hecht C, Englbrecht M, Rech J, et al. Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA[J]. Ann Rheum Dis, 2015, 74(12):2151-2156.
doi: 10.1136/annrheumdis-2014-205428 pmid: 25115448 |
[29] |
Kocijan R, Harre U, Schett G. ACPA and bone loss in rheumatoid arthritis[J]. Curr Rheumatol Rep, 2013, 15(10):366.
doi: 10.1007/s11926-013-0366-7 pmid: 23955066 |
[30] |
Engdahl C, Bang H, Dietel K, et al. Periarticular bone loss in arthritis is induced by autoantibodies against citrullinated vimentin[J]. J Bone Miner Res, 2017, 32(8):1681-1691.
doi: 10.1002/jbmr.3158 pmid: 28425620 |
[31] |
Gatenby P, Lucas R, Swaminathan A. Vitamin D deficiency and risk for rheumatic diseases: An update[J]. Curr Opin Rheumatol, 2013, 25(2):184-191.
doi: 10.1097/BOR.0b013e32835cfc16 pmid: 23370372 |
[32] |
Lee YH, Bae SC. Vitamin D level in rheumatoid arthritis and its correlation with the disease activity: A meta-analysis[J]. Clin Exp Rheumatol, 2016, 34(5):827-833.
pmid: 27049238 |
[33] |
Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia[J]. Clin Geriatr Med, 2017, 33(1):17-26.
doi: S0749-0690(16)30071-4 pmid: 27886695 |
[34] |
Lian L, Wang JX, Xu YC, et al. Sarcopenia may be a risk factor for osteoporosis in Chinese patients with rheumatoid arthritis[J]. Int J Gen Med, 2022, 15:2075-2085.
doi: 10.2147/IJGM.S349435 pmid: 35237070 |
[35] |
Chu YR, Xu SQ, Wang JX, et al. Synergy of sarcopenia and vitamin D deficiency in vertebral osteoporotic fractures in rheumatoid arthritis[J]. Clin Rheumatol, 2022, 41(7):1979-1987.
doi: 10.1007/s10067-022-06125-y |
[36] |
Amiche MA, Abtahi S, Driessen JHM, et al. Impact of cumulative exposure to high-dose oral glucocorticoids on fracture risk in Denmark: A population-based case-control study[J]. Arch Osteoporos, 2018, 13(1):30.
doi: 10.1007/s11657-018-0424-x pmid: 29552730 |
[37] |
Blavnsfeldt AG, de Thurah A, Thomsen MD, et al. The effect of glucocorticoids on bone mineral density in patients with rheumatoid arthritis: A systematic review and meta-analysis of randomized, controlled trials[J]. Bone, 2018, 114:172-180.
doi: 10.1016/j.bone.2018.06.008 URL |
[38] | Guan Y, Hao Y, Guan Y, et al. The effect of vitamin D supplementation on rheumatoid arthritis patients: A systematic review and meta-analysis[J]. Front Med (Lausanne), 2020, 7:596007. |
[39] |
Ma CC, Xu SQ, Gong X, et al. Prevalence and risk factors associated with glucocorticoid-induced osteoporosis in Chinese patients with rheumatoid arthritis[J]. Arch Osteoporos, 2017, 12(1):33.
doi: 10.1007/s11657-017-0329-0 URL |
[40] |
Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis[J]. Arthritis Care Res (Hoboken), 2010, 62(11):1515-15126.
doi: 10.1002/acr.20295 pmid: 20662044 |
[41] |
Kanagawa H, Masuyama R, Morita M, et al. Methotrexate inhibits osteoclastogenesis by decreasing RANKL-induced calcium influx into osteoclast progenitors[J]. J Bone Miner Metab, 2016, 34(5):526-531.
doi: 10.1007/s00774-015-0702-2 pmid: 26202855 |
[42] |
Ruffer N, Krusche M, Beil FT, et al. Clinical features of methotrexate osteopathy in rheumatic musculoskeletal disease: A systematic review[J]. Semin Arthritis Rheum, 2022, 52:151952.
doi: 10.1016/j.semarthrit.2022.151952 URL |
[43] |
Both T, Zillikens MC, Schreuders-Koedam M, et al. Hydroxychloroquine affects bone resorption both in vitro and in vivo[J]. J Cell Physiol, 2018, 233(2):1424-1433.
doi: 10.1002/jcp.26028 pmid: 28556961 |
[44] |
Litinsky I, Paran D, Levartovsky D, et al. The effects of leflunomide on clinical parameters and serum levels of IL-6, IL-10, MMP-1 and MMP-3 in patients with resistant rheumatoid arthritis[J]. Cytokine, 2006, 33(2):106-110.
pmid: 16487722 |
[45] |
Kwon OC, Oh JS, Hong S, et al. Conventional synthetic disease-modifying antirheumatic drugs and bone mineral density in rheumatoid arthritis patients with osteoporosis: Possible beneficial effect of leflunomide[J]. Clin Exp Rheumatol, 2019, 37(5):813-819.
pmid: 30767868 |
[46] |
Lee CK, Lee EY, Chung SM, et al. Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand[J]. Arthritis Rheum, 2004, 50(12):3831-3843.
doi: 10.1002/(ISSN)1529-0131 URL |
[47] | 王静, 赵庆杰, 卓小斌, 等. 类风湿性关节炎的治疗药物研究进展[J]. 药学实践杂志, 2019, 37(6):485-490. |
[48] | Carbone L, Vasan S, Elam R, et al. The association of methotrexate, sulfasalazine, and hydroxychloroquine use with fracture in postmenopausal women with rheumatoid arthritis: Findings from the Women's Health Initiative[J]. JBMR Plus, 2020, 4(10):e10393. |
[49] |
Poutoglidou F, Pourzitaki C, Manthou ME, et al. Infliximab prevents systemic bone loss and suppresses tendon inflammation in a collagen-induced arthritis rat model[J]. Inflammopharmacology, 2021, 29(3):661-672.
doi: 10.1007/s10787-021-00815-w pmid: 33982199 |
[50] |
Krieckaert CL, Nurmohamed MT, Wolbink G, et al. Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: A cohort study[J]. Rheumatology (Oxford), 2013, 52(3):547-553.
doi: 10.1093/rheumatology/kes320 pmid: 23221326 |
[51] |
Smolen JS, Avila JC, Aletaha D. Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its anti-inflammatory effects: Disassociation of the link between inflammation and destruction[J]. Ann Rheum Dis, 2012, 71(5):687-693.
doi: 10.1136/annrheumdis-2011-200395 pmid: 22121130 |
[52] |
Poutoglidou F, Pourzitaki C, Manthou ME, et al. The inhibitory effect of tocilizumab on systemic bone loss and tendon inflammation in a juvenile collagen-induced arthritis rat model[J]. Connect Tissue Res, 2022, 63(6):577-589.
doi: 10.1080/03008207.2022.2042275 URL |
[53] |
Gaber T, Brinkman ACK, Pienczikowski J, et al. Impact of janus kinase inhibition with tofacitinib on fundamental processes of bone healing[J]. Int J Mol Sci, 2020, 21(3):865.
doi: 10.3390/ijms21030865 URL |
[54] |
Tada M, Inui K, Sugioka Y, et al. Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study[J]. Rheumatol Int, 2018, 38(5):777-784.
doi: 10.1007/s00296-017-3922-z pmid: 29294175 |
[1] | 张娜娜, 崔轶霞, 邹琳. 类风湿关节炎患者骨密度与维生素D相关性研究进展[J]. 临床荟萃, 2024, 39(1): 92-96. |
[2] | 左腾, 王俊祥. 血清阴性类风湿关节炎发病机制的研究进展[J]. 临床荟萃, 2023, 38(8): 753-756. |
[3] | 蒋炜, 田敏涛, 李学渊. 血清营养指标与老年骨质疏松症关系的研究进展[J]. 临床荟萃, 2023, 38(7): 668-672. |
[4] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[5] | 刘亚鑫, 郭岚, 王泽凯, 牛凯. 慢性肾脏病合并骨质疏松症治疗的研究进展[J]. 临床荟萃, 2023, 38(12): 1146-1149. |
[6] | 彭艳, 白碧玥, 朱晓峰, 尹昌浩. 酒精使用障碍患者认知功能损害发病机制的研究进展[J]. 临床荟萃, 2023, 38(12): 1131-1134. |
[7] | 杨晓蓉, 周淑红, 潘亮, 郭莉江. 结缔组织病相关肺动脉高压的发病机制及其筛查的研究进展[J]. 临床荟萃, 2023, 38(10): 944-948. |
[8] | 曾晓晴, 庄伟端, 陈丽芬. 卒中后癫痫发作发病机制的研究进展[J]. 临床荟萃, 2022, 37(2): 174-177. |
[9] | 陈洁, 陈树, 尹玉峰, 常新, 武剑. 腰椎CT值对骨质疏松症诊断价值的meta分析[J]. 临床荟萃, 2022, 37(11): 970-976. |
[10] | 李惠婷, 孟景红, 顾光, 陈海英, 王俊祥. 强直性脊柱炎合并髋关节受累的临床特点[J]. 临床荟萃, 2021, 36(6): 500-503. |
[11] | 陈俏, 于晓华. 骨质疏松与血尿酸相关性研究进展[J]. 临床荟萃, 2021, 36(10): 951-955. |
[12] | 张慧卿,路延朋,宋学琴. CAPN3基因突变导致的Calpainopathy的发病机制、临床表现和实验室检测研究进展[J]. 临床荟萃, 2020, 35(6): 564-567. |
[13] | 李晶雪,李哲,王天俊. 帕金森病伴发抑郁发病机制及治疗的研究进展[J]. 临床荟萃, 2019, 34(8): 759-763. |
[14] | 李晶雪,王天俊. 卒中后抑郁发病机制及治疗研究进展[J]. 临床荟萃, 2019, 34(6): 572-576. |
[15] | 李宏超,宋慧. 炎性关节病与骨质疏松[J]. 临床荟萃, 2019, 34(4): 312-315. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||