临床荟萃 ›› 2022, Vol. 37 ›› Issue (4): 364-368.doi: 10.3969/j.issn.1004-583X.2022.04.015
吴天娇1, 常璐1, 李梓浩1, 徐丹2, 尹昌浩2, 赵维纳2()
收稿日期:
2021-11-22
出版日期:
2022-04-20
发布日期:
2022-05-13
通讯作者:
赵维纳
E-mail:zhaoweina@mdjmu.edu.cn
基金资助:
Received:
2021-11-22
Online:
2022-04-20
Published:
2022-05-13
摘要:
血管性认知障碍(vascular cognitive impairment,VCI)是由脑血管病导致的不同程度的认知功能损害,包括注意力、记忆力、执行力的下降,并且会影响患者的日常生活,但其发病机制尚未明确。微RNA(microRNA, miRNA)是一类短链非编码RNA,在调节各种神经系统疾病中起重要作用。但是,miRNA在VCI发病机制中的作用尚未得到很好的阐明。本文将主要从血脑屏障、突触可塑性、炎症和神经元自噬等方面对miRNA在VCI发病机制中的最新研究进展进行综述。
中图分类号:
吴天娇, 常璐, 李梓浩, 徐丹, 尹昌浩, 赵维纳. 微RNA在血管性认知障碍发病机制中的研究进展[J]. 临床荟萃, 2022, 37(4): 364-368.
[1] |
Gorelick PB, Scuteri A, Black SE. et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2011, 42(9):2672-2713.
doi: 10.1161/STR.0b013e3182299496 pmid: 21778438 |
[2] |
Toyama K, Spin JK, Mogi M. et al. Therapeutic perspective on vascular cognitive impairment[J]. Pharmacol Res, 2019, 146:104266.
doi: 10.1016/j.phrs.2019.104266 URL |
[3] | Kang YC, Zhang L, Su Y. et al. MicroRNA-26b regulates the microglial inflammatory response in hypoxia/Ischemia and affects the development of vascular cognitive impairment[J]. Front Cell Neurosci, 2018, 12:154. |
[4] | Toyama K, Spin JM, Tsao PS. Role of microRNAs on blood brain barrier dysfunction in vascular cognitive impairment[J]. Curr Drug Deliv, 2017, 14(6) : 744-757. |
[5] | Marchegiani F, Matacchione G, Ramini D. et al. Diagnostic performance of new and classic CSF biomarkers in age-related dementias[J]. Aging (Albany NY), 2019, 11(8):2420-2429. |
[6] |
Toyama K, Spin JM, Deng AC. et al. MicroRNA-mediated therapy modulating blood-brain barrier disruption improves vascular cognitive impairment[J]. Arterioscler Thromb Vasc Biol, 2018, 38(6):1392-1406.
doi: 10.1161/ATVBAHA.118.310822 URL |
[7] |
Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells[J]. J Leukoc Biol, 2010, 87(5):779-789.
doi: 10.1189/jlb.1109766 URL |
[8] |
Shangguan Y, Han J, Su H. GAS5 knockdown ameliorates apoptosis and inflammatory response by modulating miR-26b-5p/Smad 1axis in cerebral ischaemia/reperfusion injury[J]. Behav Brain Res, 2020, 379:112370.
doi: 10.1016/j.bbr.2019.112370 pmid: 31751592 |
[9] |
Chen L, Dong R, Lu Y. et al. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice[J]. Brain Behav Immun, 2019, 78:188-201.
doi: S0889-1591(18)30518-X pmid: 30685530 |
[10] |
Yuan M, Bi X. Therapeutic and diagnostic potential of microRNAs in vascular cognitive impairment[J]. J Mol Neurosci, 2020, 70(10):1619-1628.
doi: 10.1007/s12031-020-01597-6 pmid: 32476095 |
[11] |
Wang D, Duan H, Feng J. et al. Soluble CD146, a cerebrospinal fluid marker for neuroinflammation, promotes blood-brain barrier dysfunction[J]. Theranostics, 2020, 10(1):231-246.
doi: 10.7150/thno.37142 URL |
[12] | 李文倩, 吕鹤群, 彭拥军, 等. 缺血性脑卒中后血脑屏障损伤机制研究现状[J]. 中国临床药理学杂志, 2020, 36(21) :3533-3537. |
[13] |
Seo S, Kim H, Sung JH. et al. Microphysiological systems for recapitulating physiology and function of blood-brain barrier[J]. Biomaterials, 2020, 232:119732.
doi: 10.1016/j.biomaterials.2019.119732 URL |
[14] |
Fang Z, He QW, Li Q. et al. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats[J]. FASEB J, 2016, 30(6):2097-2107.
doi: 10.1096/fj.201500126 pmid: 26887441 |
[15] | Ma F, Sun P, Zhang X. et al. Endothelium-targeted deletion of the miR-15a/16-1 cluster ameliorates blood-brain barrier dysfunction in ischemic stroke[J]. Sci Signal, 2020, 13(626):eaay5686. |
[16] |
Burek M, König A, Lang M. et al. Hypoxia-Induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells[J]. Transl Stroke Res, 2019, 10(6):672-683.
doi: 10.1007/s12975-018-0683-2 URL |
[17] |
Reijerkerk A, Lopez-Ramirez MA, van Het Hof B. et al. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: Implications for multiple sclerosis[J]. J Neurosci, 2013, 33(16):6857-6863.
doi: 10.1523/JNEUROSCI.3965-12.2013 pmid: 23595744 |
[18] |
Ma Q, Dasgupta C, Li Y. et al. MicroRNA-210 suppresses junction proteins and disrupts blood-brain barrier integrity in neonatal rat hypoxic-ischemic brain injury[J]. Int J Mol Sci, 2017, 18(7):1356.
doi: 10.3390/ijms18071356 URL |
[19] |
Prabhakar P, Chandra SR, Christopher R. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease[J]. Age Ageing, 2017, 46(5):861-864.
doi: 10.1093/ageing/afx090 URL |
[20] |
Michely J, Kraft S, Müller U. MiR-12 and miR-124 contribute to defined early phases of long-lasting and transient memory[J]. Sci Rep, 2017, 7(1):7910.
doi: 10.1038/s41598-017-08486-w pmid: 28801686 |
[21] | 彭飞飞, 陶晓晓, 章熠, 等. 急性脑梗死患者外周血微RNA的表达及其与炎性因子的关系[J]. 重庆医学, 2020, 49(22):3772-3777. |
[22] |
Hu XL, Wang XX, Zhu YM. et al. MicroRNA-132 regulates total protein of Nav1.1 and Nav1.2 in the hippocampus and cortex of rat with chronic cerebral hypoperfusion[J]. Behav Brain Res, 2019, 366:118-125.
doi: 10.1016/j.bbr.2019.03.026 URL |
[23] |
Ren Z, Yu J, Wu Z. et al. MicroRNA-210-5p contributes to cognitive impairment in early vascular dementia rat model through targeting snap25[J]. Front Mol Neurosci, 2018, 11:388.
doi: 10.3389/fnmol.2018.00388 URL |
[24] |
Yao ZH, Yao XL, Zhang Y. et al. MiR-132 down-regulates methyl CpG binding protein 2 (MeCP2) during cognitive dysfunction following chronic cerebral hypoperfusion[J]. Curr Neurovasc Res, 2017, 14(4):385-396.
doi: 10.2174/1567202614666171101115308 URL |
[25] |
Mo Y, Sun YY, Liu KY. Autophagy and inflammation in ischemic stroke[J]. Neural Regen Res, 2020, 15(8):1388-1396.
doi: 10.4103/1673-5374.274331 URL |
[26] | 黄可群, 刘琳, 崔巍, 等. MicroRNA调控认知功能的研究进展[J]. 中华脑科疾病与康复杂志, 2020, 10(1):53-56. |
[27] | Dong H, Li J, Huang L. et al. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer's disease[J]. Dis Markers, 2015, 2015:625659. |
[28] |
Yu P, Venkat P, Chopp M. et al. Role of microRNA-126 in vascular cognitive impairment in mice[J]. J Cereb Blood Flow Metab, 2019, 39(12):2497-2511.
doi: 10.1177/0271678X18800593 URL |
[29] |
Bijkerk R, Kallenberg MH, Zijlstra LE. et al. Circulating angiopoietin-2 and angiogenic microRNAs associate with cerebral small vessel disease and cognitive decline in older patients reaching end-stage renal disease[J]. Nephrol Dial Transplant, 2022, 37(3):498-506.
doi: 10.1093/ndt/gfaa370 URL |
[30] |
Jakaria M, Haque ME, Cho DY. et al. Molecular insights into NR4A2(Nurr1): An emerging target for neuroprotective therapy against neuroinflammation and neuronal cell death[J]. Mol Neurobiol, 2019, 56(8):5799-5814.
doi: 10.1007/s12035-019-1487-4 pmid: 30684217 |
[31] |
Prendecki M, Florczak-Wyspianska J, Kowalska M. et al. APOE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer's disease[J]. Folia Neuropathol, 2019, 57(2):106-116.
doi: 36523 pmid: 31556571 |
[32] |
Gao ZF, Ji XL, Gu J. et al. MicroRNA-107 protects against inflammation and endoplasmic reticulum stress of vascular endothelial cells via KRT1-dependent Notch signaling pathway in a mouse model of coronary atherosclerosis[J]. J Cell Physiol, 2019, 234(7):12029-12041.
doi: 10.1002/jcp.27864 URL |
[33] |
Lu Y, Xu X, Dong R. et al. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice[J]. Cytokine, 2019, 120:41-53.
doi: 10.1016/j.cyto.2019.04.005 URL |
[34] |
Zhao Y, Gan Y, Xu G. et al. Eexosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation[J]. Life Sci, 2020, 260:118403.
doi: 10.1016/j.lfs.2020.118403 URL |
[35] | Ouyang Y, Li D, Wang H. et al. MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats[J]. Aging Cell, 2019, 18(6):e13022. |
[36] |
Lossi L, Castagna C, Merighi A. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum[J]. Int J Mol Sci, 2018, 19(12):3999.
doi: 10.3390/ijms19123999 URL |
[37] |
Catanesi M, d'Angelo M, Tupone MG. et al. MicroRNAs dysregulation and mitochondrial dysfunction in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(17):5986.
doi: 10.3390/ijms21175986 URL |
[38] |
Wang Y, Gu T, Shi E. et al. Inhibition of microRNA-29c protects the brain in a rat model of prolonged hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 2015, 150(3):675-84.e1.
doi: 10.1016/j.jtcvs.2015.04.062 URL |
[39] |
Liu P, Liu P, Wang Z. et al. Inhibition of microRNA-96 ameliorates cognitive impairment and inactivation autophagy following chronic cerebral hypoperfusion in the rat[J]. Cell Physiol Biochem, 2018, 49(1):78-86.
doi: 10.1159/000492844 URL |
[40] |
Che H, Yan Y, Kang XH. et al. MicroRNA-27a promotes inefficient lysosomal clearance in the hippocampi of rats following chronic brain hypoperfusion[J]. Mol Neurobiol, 2017, 54(4):2595-2610.
doi: 10.1007/s12035-016-9856-8 URL |
[41] |
Zhang Y, Liu C, Wang J. et al. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice[J]. Sci Rep, 2016, 6:24566.
doi: 10.1038/srep24566 URL |
[42] |
Hwang JY, Kaneko N, Noh KM. et al. The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die[J]. J Mol Biol, 2014, 426(20):3454-3466.
doi: 10.1016/j.jmb.2014.07.032 URL |
[43] |
Hansen KF, Karelina K, Sakamoto K. et al. MiRNA-132: A dynamic regulator of cognitive capacity[J]. Brain Struct Funct, 2013, 218(3): 817-831.
doi: 10.1007/s00429-012-0431-4 URL |
[44] |
Danka Mohammed CP, Park JS, Nam HG. et al. MicroRNAs in brain aging[J]. Mech Ageing Dev, 2017, 168:3-9.
doi: S0047-6374(16)30237-8 pmid: 28119001 |
[1] | 陶嘉楠, 王学红, 张宏琳. miR-146b在恶性肿瘤中的研究进展[J]. 临床荟萃, 2021, 36(8): 765-768. |
[2] | 王慧玲, 郑连红, 王萌. 脑微出血机制与危险因素的研究进展[J]. 临床荟萃, 2021, 36(8): 749-752. |
[3] | 陈礼龙, 刘务朝, 司秋艳, 张建平, 程荣, 吴权. 不同剂量硫酸氢氯吡格雷对脑梗死患者血流动力学指标及血清miR-191、miR-18a水平的影响[J]. 临床荟萃, 2021, 36(7): 608-611. |
[4] | 牛国超, 尹凤荣, 张晓岚. 他汀类药物致肝损伤的临床特征及其防治[J]. 临床荟萃, 2018, 33(6): 478-481. |
[5] | 刘梦涵;罗建民. MiRNA在慢性粒细胞白血病中的研究进展[J]. 临床荟萃, 2015, 30(8): 951-955. |
[6] | 金花;姜彩霞;刘跃辉;马骏萍;张东威. 脑小血管病诊疗进展[J]. 临床荟萃, 2015, 30(2): 231-233. |
[7] | 何福海;李建;孙鹏. 磷酸二酯酶抑制剂调节脑微血管内皮细胞屏障功能的研究[J]. 临床荟萃, 2014, 29(9): 1015-1018. |
[8] | 陈小良;廉姜芳;周建庆. 循环microRNA在冠心病中功能的研究进展[J]. 临床荟萃, 2014, 29(4): 468-471. |
[9] | 王斯;刘小静;王倩;刘茂东;李英. 微小RNAs与肾脏疾病[J]. 临床荟萃, 2014, 29(4): 458-461. |
[10] | 蒋萍萍. 老年急性脑血管病合并脑心综合征70例临床分析[J]. 临床荟萃, 2013, 28(4): 434-436. |
[11] | 刘秋庭;涂鄂文;李军凤;吴军. 阿托伐他汀对实验性脑出血大鼠脑组织中基质金属蛋白酶9表达和脑水肿影响[J]. 临床荟萃, 2013, 28(3): 298-301. |
[12] | 国建;廉姜芳. 与心律失常相关微小RNA的研究进展[J]. 临床荟萃, 2013, 28(12): 1438-0. |
[13] | 王连芹;宁海春. 关注缺血性脑血管病血压——个体化目标血压就是大脑的新理念[J]. 临床荟萃, 2012, 27(6): 461-463. |
[14] | 韩壮;李石玲. 磁敏感成像在隐匿性出血性脑血管疾病方面的研究进展[J]. 临床荟萃, 2012, 27(20): 1824-1826. |
[15] | 刘宏丽;孙丽敏;邵彩慧;田力;高岩;谢强. 水蛭素对大鼠脑出血后细胞黏附分子1mRNA表达及血脑屏障通透性的影响[J]. 临床荟萃, 2012, 27(20): 1781-1784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||