临床荟萃 ›› 2022, Vol. 37 ›› Issue (5): 472-476.doi: 10.3969/j.issn.1004-583X.2022.05.017
收稿日期:
2022-02-08
出版日期:
2022-05-20
发布日期:
2022-06-22
通讯作者:
邬秀娣
E-mail:wuxiudinbey@163.com
基金资助:
Received:
2022-02-08
Online:
2022-05-20
Published:
2022-06-22
摘要:
强直性脊柱炎(ankylosing spondylitis,AS)是一种严重影响青壮年健康的慢性炎症性疾病,具体发病机制仍未明确。Keap1/Nrf2信号通路参与各种病理过程中的细胞保护机制,被认为是氧化应激的敏感传感器和调节器。临床发现AS患者血尿酸水平存在异常,目前认为尿酸可能通过Keap1/Nrf2通路参与调控AS氧化应激。本文总结了近年来AS与血尿酸水平及Keap1/Nrf2通路的研究进展,以期为深入了解AS的发病机制、监测病情和指导治疗提供新思路。
中图分类号:
俞杭, 邬秀娣. 尿酸作用于Keap1/Nrf2通路调控强直性脊柱炎氧化应激的研究进展[J]. 临床荟萃, 2022, 37(5): 472-476.
[1] |
Sieper J, Poddubnyy D. Axial spondyloarthritis[J]. Lancet, 2017, 390(10089):73-84.
doi: 10.1016/S0140-6736(16)31591-4 URL |
[2] | Wenker KJ, Quint JM. Ankylosing spondylitis[M]. In: Statpearls. Treasure Island (fl): Statpearls Publishing llc, 2022. |
[3] |
Korotaeva T, Dina o, Holdsworth E, et al. Investigating diagnosis, treatment, and burden of disease in patients with ankylosing spondylitis in central eastern europe and the United States: A real-world study[J]. Clin Rheumatol, 2021, 40(12):4915-4926.
doi: 10.1007/s10067-021-05864-8 pmid: 34319479 |
[4] |
Golder V, Schachna L. Ankylosing spondylitis: An update[J]. Aust Fam Physician, 2013, 42(11):780-784.
pmid: 24217097 |
[5] |
de Bruin F, Treyvaud MO, Feydy A, et al. Prevalence of degenerative changes and overlap with spondyloarthritis-associated lesions in the spine of patients from the desir cohort[J]. Rmd Open 2018, 4(1):e000657.
doi: 10.1136/rmdopen-2018-000657 URL |
[6] |
van der Heijde D, Braun J, Deodhar A, et al. Modified stoke ankylosing spondylitis spinal score as an outcome measure to assess the impact of treatment on structural progression in ankylosing spondylitis[J]. Rheumatology (Oxford), 2019, 58(3):388-400.
doi: 10.1093/rheumatology/key128 URL |
[7] |
Magrey M, Ritchlin C. Measuring outcomes in ankylosing spondylitis: Pearls and pitfalls[J]. Curr Opin Rheumatol, 2019, 31(2):109-117.
doi: 10.1097/BOR.0000000000000588 URL |
[8] |
Liu L, Yuan Y, Zhang S, et al. Osteoimmunological insights into the pathogenesis of ankylosing spondylitis[J]. J Cell Physiol, 2021, 236(9):6090-6100.
doi: 10.1002/jcp.30313 URL |
[9] |
Song C, Zhao X. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion[J]. Biosci Rep, 2018, 38(3):bsr20170939.
doi: 10.1042/BSR20170939 URL |
[10] | Suzuki T, Yamamoto M. Molecular basis of the keap1-Nrf2 system[J]. Free Radic Biol Med, 2015, 88(Pt B):93-100. |
[11] | Zou YC, Yang XW, Yuan SG, et al. Celastrol inhibits prostaglandin e2-induced proliferation and osteogenic differentiation of fibroblasts isolated from ankylosing spondylitis hip tissues in vitro[J]. Drug Des Devel Ther, 2016, 10:933-948. |
[12] |
Zhu J, Li A, Jia E, et al. Monosodium urate crystal deposition associated with the progress of radiographic grade at the sacroiliac joint in axial spa: A dual-energy CT study[J]. Arthritis Res Ther, 2017, 19(1):83.
doi: 10.1186/s13075-017-1286-0 URL |
[13] | Zhang XJ, Cui XM, Chen RY, et al. The analysis of clinical characteristics and disease activity in ankylosing spondylitis patients with hyperuricemia[J]. Zhonghua Yi Xue Za Zhi, 2018, 98(13):982-986. |
[14] | 曾沛英, 钟剑球, 黄雪婷, 等. 合并高尿酸血症的强直性脊柱炎患者的临床分析[J]. 中华风湿病学杂志, 2019, 23(7):454-458. |
[15] |
Ye G, Xie Z, Zeng H, et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis[J]. Cell Death Dis, 2020, 11(9):775.
doi: 10.1038/s41419-020-02993-x URL |
[16] | Dong M, Yu D, Duraipandiyan V, et al. The protective effect of chrysanthemum indicum extract against ankylosing spondylitis in mouse models[J]. Biomed Res Int, 2017:8206281. |
[17] |
Müller SG, Jardim NS, Quines CB, et al. Diphenyl diselenide regulates nrf2/keap-1 signaling pathway and counteracts hepatic oxidative stress induced by bisphenol a in male mice[J]. Environ Res, 2018, 164:280-287.
doi: 10.1016/j.envres.2018.03.006 URL |
[18] |
Vnukovb VV, Gutsenko OI, Milyutina NP, et al. Skq1 regulates expression of nrf2, are-controlled genes encoding antioxidant enzymes, and their activity in cerebral cortex under oxidative stress[J]. Biochemistry (Mosc), 2017, 82(8):942-952.
doi: 10.1134/S0006297917080090 URL |
[19] |
Zhang N, Shu HY, Huang T, et al. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-ohda toxicity[J]. PLoS One, 2014, 9(6):e100286.
doi: 10.1371/journal.pone.0100286 URL |
[20] | Ya BL, Liu Q, Li HF, et al. Uric acid protects against focal cerebral ischemia/reperfusion-induced oxidative stress via activating nrf2 and regulating neurotrophic factor expression[J]. Oxid Med Cell Longev, 2018:6069150. |
[21] | 沈瑞明, 李国铨, 郭峰. 血尿酸通过keap1-nrf2信号通路对强直性脊柱炎氧化应激作用机制研究[J]. 海南医学院学报, 2020, 26(10):771-774, 781. |
[22] | Singh HJ, Nimarpreet K, Ashima, et al. Study of bone mineral density in patients with ankylosing spondylitis[J]. J Clin Diagn Res, 2013, 7(12):2832-2835. |
[23] | Wang C, Li W. Effects of etanercept and infliximab on bone metabolism indexes in patients with ankylosing spondylitis[J]. Exp Ther Med, 2020, 19(1):585-590. |
[24] |
Rozenberg K, Wollman A, Ben-Shachar M, et al. Anti-inflammatory effects of sarcopoterium spinosum extract[J]. J Ethnopharmacol, 2020, 249:112391.
doi: 10.1016/j.jep.2019.112391 URL |
[25] |
Redlich K, Smolen JS. Inflammatory bone loss: Pathogenesis and therapeutic intervention[J]. Nat Rev Drug Discov, 2012, 11(3):234-250.
doi: 10.1038/nrd3669 pmid: 22378270 |
[26] |
Cheng GM, Wang RL, Zhang B, et al. The protective effect of uric acid in reducing tlr4/nf-κb activation through the inhibition of hmgb1 acetylation in a model of ischemia-reperfusion injury in vitro[J]. Mol Biol Rep, 2020, 47(4):3233-3240.
doi: 10.1007/s11033-020-05324-7 URL |
[27] |
Ishii S, Miyao M, Mizuno Y, et al. Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women[J]. Osteoporos Int, 2014, 25(3):1099-1105.
doi: 10.1007/s00198-013-2571-7 pmid: 24318630 |
[28] |
Kanzaki H, Shinohara F, Kajiya M, et al. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling[J]. J Biol Chem, 2013, 288(32):23009-23020.
doi: 10.1074/jbc.M113.478545 URL |
[29] |
Yin Y, Corry KA, Loughran JP, et al. Moderate Nrf2 activation by genetic disruption of keap1 has sex-specific effects on bone mass in mice[J]. Sci Rep, 2020, 10(1):348.
doi: 10.1038/s41598-019-57185-1 URL |
[30] |
Bonaccorsi G, Trentini A, Greco P, et al. Changes in adipose tissue distribution and association between uric acid and bone health during menopause transition[J]. Int J Mol Sci, 2019, 20(24):6321.
doi: 10.3390/ijms20246321 URL |
[31] |
Ibrahim WN, Younes N, Shi Z, et al. Serum uric acid level is positively associated with higher bone mineral density at multiple skeletal sites among healthy qataris[J]. Front Endocrinol (Lausanne), 2021, 12:653685.
doi: 10.3389/fendo.2021.653685 URL |
[32] |
Yan DD, Wang J, Hou XH, et al. Association of serum uric acid levels with osteoporosis and bone turnover markers in a chinese population[J]. Acta Pharmacol Sin, 2018, 39(4):626-632.
doi: 10.1038/aps.2017.165 URL |
[33] |
Wu Y, Zhang G, Wang N, et al. Risk factors of renal involvement based on different manifestations in patients with ankylosing spondylitis[J]. Kidney Blood Press Res, 2018, 43(2):367-377.
doi: 10.1159/000488071 URL |
[34] |
Rauner M, Thiele S, Fert I, et al. Loss of bone strength in hla-b27 transgenic rats is characterized by a high bone turnover and is mainly osteoclast-driven[J]. Bone, 2015, 75:183-191.
doi: 10.1016/j.bone.2015.02.024 URL |
[35] | Zhang T, Yang F, Zuo K, et al. HLA-B27 negativity is associated with renal function decline in patients with ankylosing spondylitis and secondary iga nephropathy[J]. Front Med (Lausanne), 2020, 7:89. |
[36] |
Coppolino G, Leonardi G, Andreucci M, et al. oxidative stress and kidney function:A brief update[J]. Curr Pharm Des, 2018, 24(40):4794-4799.
doi: 10.2174/1381612825666190112165206 URL |
[37] |
Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2[J]. Antioxid Redox Signal, 2018, 29(17):1727-1745.
doi: 10.1089/ars.2017.7342 URL |
[38] |
Saito H. Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases[J]. Biochem Pharmacol, 2013, 85(7):865-872.
doi: 10.1016/j.bcp.2013.01.006 URL |
[39] |
Nezu M, Suzuki N, Yamamoto M. Targeting the Keap1-Nrf2 system to prevent kidney disease progression[J]. Am J Nephrol, 2017, 45(6):473-483.
doi: 10.1159/000475890 URL |
[40] | Lin Y, Xie Y, Hao Z, et al. Protective effect of uric acid on ox-ldl-induced huvecs injury via Keap1-Nrf2-are pathway[J]. J Immunol Res, 2021:5151168. |
[41] |
Li B, Jiang T, Liu H, et al. Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1-Nrf2-are signaling pathway[J]. J Cell Physiol, 2018, 234(1):561-571.
doi: 10.1002/jcp.26769 URL |
[42] | He X, Liang B, Gu N. Th17/Treg imbalance and atherosclerosis[J]. Dis Markers, 2020: 8821029. |
[43] | Tudoraᶊcu DR, Ciurea PL, Vreju AF, et al. Assessing endothelial dysfunction in patients with ankylosing spondylitis[J]. Curr Health Sci J, 2016, 42(1):61-68. |
[44] | van-Assche T, Huygelen V, Crabtree MJ, et al. Gene therapy targeting inflammation in atherosclerosis[J]. Curr Health Sci J, 2011, 17(37):4210-4223. |
[45] |
Zhu H, Jia Z, Zhang L, et al. Antioxidants and phase 2 enzymes in macrophages: Regulation by Nrf2 signaling and protection against oxidative and electrophilic stress[J]. Exp Biol Med (Maywood), 2008, 233(4): 463-474.
doi: 10.3181/0711-RM-304 URL |
[46] |
Chen B, Lu Y, Chen Y, et al. The role of Nrf2 in oxidative stress-induced endothelial injuries[J]. J Endocrinol, 2015, 225(3):r83-99.
doi: 10.1530/JOE-14-0662 URL |
[47] |
Ko J, Kang HJ, Kim DA, et al. Uric acid induced the phenotype transition of vascular endothelial cells via induction of oxidative stress and glycocalyx shedding[J]. FASEB J, 2019, 33(12):13334-13345.
doi: 10.1096/fj.201901148R URL |
[48] |
Kurajoh M, Fukumoto S, Yoshida S, et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in medcity21 health examination registry[J]. Sci Rep, 2021, 11(1):7378.
doi: 10.1038/s41598-021-86962-0 URL |
[49] |
Dalbeth N, House ME, Aati O, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: A dual energy CT study[J]. Ann Rheum Dis, 2015, 74(5):908-911.
doi: 10.1136/annrheumdis-2014-206397 pmid: 25637002 |
[50] |
Andrés M, Quintanilla MA, Sivera F, et al. Silent monosodium urate crystal deposits are associated with severe coronary calcification in asymptomatic hyperuricemia: An exploratory study[J]. Arthritis Rheumatol, 2016, 68(6):1531-1539.
doi: 10.1002/art.39581 URL |
[51] |
Kang KY, Hong YS, Park SH, et al. Low levels of serum uric acid increase the risk of low bone mineral density in young male patients with ankylosing spondylitis[J]. J Rheumatol, 2015, 42(6):968-974.
doi: 10.3899/jrheum.140850 URL |
[52] | 孙文婷, 朱峰, 郑丹妮, 等. 男性强直性脊柱炎患者骨密度与血尿酸水平相关性研究[J]. 中国骨质疏松杂志, 2020, 26(4):502-506. |
[53] |
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809):239-247.
doi: 10.1038/35041687 URL |
[54] | 黎荣山, 黎文军, 王勇, 等. 柳州市人群血尿酸水平与骨密度之间的关系[J]. 中国医学创新 2016, 13(15):138-141. |
[55] |
Chen Z, Yang P, Wu Y, et al. Serum uric acid shows inverted “u” type correlation with osteoporosis in chinese ankylosing spondylitis patients: A retrospective study[J]. Med Sci Monit, 2019, 25:9702-9711.
doi: 10.12659/MSM.918766 URL |
[56] |
Zhang B, Yang N, Lin SP, et al. Suitable concentrations of uric acid can reduce cell death in models of OGD and cerebral ischemia-reperfusion injury[J]. Cell Mol Neurobiol, 2017, 37(5):931-939.
doi: 10.1007/s10571-016-0430-8 pmid: 27709309 |
[1] | 王九雪, 李娜, 靳玮, 王硕, 常雅君, 王天俊. 帕金森病患者血清尿酸、同型半胱氨酸和胱抑素C水平与运动症状及认知功能的相关性[J]. 临床荟萃, 2024, 39(2): 125-129. |
[2] | 魏宇涵, 赵亚楠, 张桂彬, 吴雨晴, 董博华, 扈家源, 杨文琦. 单核细胞/高密度脂蛋白胆固醇比值、红细胞分布宽度、尿酸与冠心病患者冠状动脉病变严重程度的相关性[J]. 临床荟萃, 2023, 38(9): 796-801. |
[3] | 刘静, 罗娜, 冯尚勇, 王艳, 张真稳, 佘敦敏. 2020年扬州地区体检人群高尿酸患病率及其危险因素分析[J]. 临床荟萃, 2023, 38(5): 428-432. |
[4] | 刘彬, 翟桂兰, 孙巨峰. 中性粒细胞计数联合血尿酸对急性一氧化碳中毒患者心肌损伤的预测价值[J]. 临床荟萃, 2023, 38(3): 245-249. |
[5] | 沈雪娇, 李燕, 王挺, 王媛. 痛风性关节炎血管内皮功能及其与血尿酸水平的相关性[J]. 临床荟萃, 2023, 38(3): 241-244. |
[6] | 鞠岩, 郭鹏, 吴伯韬, 刘新宇. 唾液血液尿酸比与糖尿病周围神经病变的相关性[J]. 临床荟萃, 2023, 38(1): 37-41. |
[7] | 王会新, 赵芳晴, 张馨妍, 侯晓雯. 中国人尿酸水平与急性缺血性脑卒中患者预后关系的meta分析[J]. 临床荟萃, 2022, 37(9): 785-790. |
[8] | 高士欣, 宋冰, 施克新. 血清脂蛋白α、胱抑素-C和尿酸检测对早期糖尿病肾病的诊断价值[J]. 临床荟萃, 2022, 37(3): 248-252. |
[9] | 张雪晴, 陈树春. 血尿酸与高密度脂蛋白胆固醇比值在糖脂代谢相关疾病中的研究进展[J]. 临床荟萃, 2022, 37(11): 1044-1047. |
[10] | 李亚茹, 赵海鹰, 冀笑怡, 王梦琳, 王浩, 李玲, 蒋玲, 王新宇. 大学生血尿酸与儿茶酚胺的相关性[J]. 临床荟萃, 2021, 36(4): 357-360. |
[11] | 陈俏, 于晓华. 骨质疏松与血尿酸相关性研究进展[J]. 临床荟萃, 2021, 36(10): 951-955. |
[12] | 李雅楠, 侯云霞, 李鸿斌. 肠道菌群与尿酸相关性疾病的研究进展[J]. 临床荟萃, 2021, 36(1): 80-83. |
[13] | 彭程1,张源鑫1,林贵英1,吕小亮2. 血尿酸水平与急性缺血性脑卒中预后关系的meta分析[J]. 临床荟萃, 2020, 35(8): 677-683. |
[14] | 于泓a,李佳艳a,付亚南b. 血清尿酸、肌酐及胱抑素C水平与青年卒中患者神经功能缺损程度的相关性[J]. 临床荟萃, 2020, 35(7): 616-619. |
[15] | 詹雅萍, 李娴, 朱香顺, 王国芬, 童筱君. 双歧杆菌四联活菌辅助治疗对高尿酸血症的临床分析[J]. 临床荟萃, 2020, 35(4): 344-347. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||