临床荟萃 ›› 2023, Vol. 38 ›› Issue (9): 845-850.doi: 10.3969/j.issn.1004-583X.2023.09.013
收稿日期:
2023-06-10
出版日期:
2023-09-20
发布日期:
2023-11-21
通讯作者:
田利民,Email:基金资助:
Received:
2023-06-10
Online:
2023-09-20
Published:
2023-11-21
摘要:
帕金森病(parkinson’s disease,PD)是第二大常见的神经退行性病变,主要表现为运动迟缓、肌强直、静止性震颤等运动症状,以及痴呆、抑郁、社交恐惧等非运动症状。2型糖尿病(diabetes mellitus type 2,T2DM)是最常见的慢性病之一,其特征是长期胰岛素抵抗(insulin resistance,IR)和胰岛素分泌缺陷。PD和T2DM有共同发病机制,如IR、糖基化终末产物及甲基乙二醛大量累积、氧化应激和线粒体功能障碍等,T2DM患者发生PD的风险增加。治疗T2DM的药物,如二甲双胍、胰岛素增敏剂等具有神经修复和保护功能,有可能成为治疗帕金森的潜在药物。同时,治疗PD的药物,如溴隐亭、左旋多巴也会影响糖代谢及胰岛素分泌。本文旨在概述PD与T2DM的相关机制,同时总结两者的潜在治疗方法。
中图分类号:
张娜文, 黄少敏, 田利民. 2型糖尿病与帕金森病相关性研究的进展[J]. 临床荟萃, 2023, 38(9): 845-850.
出版 年份 | 研究设计 | 结论 |
---|---|---|
2007 | 前瞻性队列研究 | T2DM与PD发生风险增加有关[ |
2008 | 前瞻性队列研究 | T2DM病史与PD发生风险增加有关,校正混杂因素和排除已知血管疾病受试者后,仍有相关性[ |
2011 | 前瞻性队列研究 | T2DM会增加PD发生风险[ |
2012 | 回顾性队列研究 | 校正其他变量后,T2DM会增加PD发病率[ |
2012 | 病例对照研究 | T2DM是PD症状严重程度的危险因素[ |
2018 | 回顾性队列研究 | T2DM增加PD发生率[ |
2020 | 前瞻性队列研究 | T2DM患者PD风险增加,PD发病率与高血糖暴露程度呈正比[ |
2021 | 前瞻性队列研究 | 血糖控制不佳的T2DM是PD患者运动症状加重的独立危险因素[ |
2021 | 回顾性队列研究 | T2DM前期和T2DM均增加PD发生率[ |
2023 | 回顾性队列研究 | T2DM严重程度与PD发生风险增加有关[ |
表1 PD与T2DM的相关性
出版 年份 | 研究设计 | 结论 |
---|---|---|
2007 | 前瞻性队列研究 | T2DM与PD发生风险增加有关[ |
2008 | 前瞻性队列研究 | T2DM病史与PD发生风险增加有关,校正混杂因素和排除已知血管疾病受试者后,仍有相关性[ |
2011 | 前瞻性队列研究 | T2DM会增加PD发生风险[ |
2012 | 回顾性队列研究 | 校正其他变量后,T2DM会增加PD发病率[ |
2012 | 病例对照研究 | T2DM是PD症状严重程度的危险因素[ |
2018 | 回顾性队列研究 | T2DM增加PD发生率[ |
2020 | 前瞻性队列研究 | T2DM患者PD风险增加,PD发病率与高血糖暴露程度呈正比[ |
2021 | 前瞻性队列研究 | 血糖控制不佳的T2DM是PD患者运动症状加重的独立危险因素[ |
2021 | 回顾性队列研究 | T2DM前期和T2DM均增加PD发生率[ |
2023 | 回顾性队列研究 | T2DM严重程度与PD发生风险增加有关[ |
[1] | Dorsey ER, Sherer T, Okun MS, et al. The emerging evidence of the parkinson pandemic[J]. J Parkinsons Dis, 2018, 8(s1): S3-S8. |
[2] | 王璐璐, 董露露, 王天俊. 多巴胺转运体99mTc-TRODAT-1 SPECT显像在帕金森病诊断中的研究进展[J]. 临床荟萃, 2022, 37(5): 463-466. |
[3] | 梁战华, 王琰, 赵航, 等. 帕金森病早期运动症状的临床分析[J]. 临床荟萃, 2011, 26(19): 1706-1708. |
[4] | De Pablo-Fernandez E, Goldacre R, Pakpoor J, et al. Association between diabetes and subsequent parkinson disease: A record-linkage cohort study[J]. Neurology, 2018, 91(2): e139-e142. |
[5] |
Wang Y, Bergström J, Ingelsson M, et al. Studies on alpha-synuclein and islet amyloid polypeptide interaction[J]. Front Mol Biosci, 2023, 10: 1080112.
doi: 10.3389/fmolb.2023.1080112 URL |
[6] |
Sandyk R. The relationship between diabetes mellitus and parkinson's disease[J]. Int J Neurosci, 1993, 69(1-4): 125-130.
doi: 10.3109/00207459309003322 pmid: 8082998 |
[7] |
Hu G, Jousilahti P, Bidel S, et al. Type 2 diabetes and the risk of parkinson's disease[J]. Diabetes Care, 2007, 30(4): 842-847.
doi: 10.2337/dc06-2011 pmid: 17251276 |
[8] |
Driver JA, Smith A, Buring JE, et al. Prospective cohort study of type 2 diabetes and the risk of parkinson's disease[J]. Diabetes Care, 2008, 31(10): 2003-2005.
doi: 10.2337/dc08-0688 pmid: 18599528 |
[9] |
Xu Q, Park Y, Huang X, et al. Diabetes and risk of parkinson's disease[J]. Diabetes Care, 2011, 34(4): 910-915.
doi: 10.2337/dc10-1922 pmid: 21378214 |
[10] |
Sun Y, Chang YH, Chen HF, et al. Risk of parkinson disease onset in patients with diabetes: A 9-year population-based cohort study with age and sex stratifications[J]. Diabetes Care, 2012, 35(5): 1047-1049.
doi: 10.2337/dc11-1511 pmid: 22432112 |
[11] |
Kotagal V, Albin RL, Müller ML, et al. Clinical features of parkinson disease when onset of diabetes came first: A case-control study[J]. Neurology, 2012, 79(17): 1835-1836.
doi: 10.1212/WNL.0b013e3182742edb pmid: 23091078 |
[12] | Melgoza IP, Jilani R, Shehzad Z, et al. Comment on rhee et al. association between glycemic status and the risk of parkinson disease: A nationwide population-based study.[J]. Diabetes Care, 2021, 44(5): e95-e96. |
[13] |
Ou R, Wei Q, Hou Y, et al. Effect of diabetes control status on the progression of parkinson's disease: A prospective study[J]. Ann Clin Transl Neurol, 2021, 8(4): 887-897.
doi: 10.1002/acn3.v8.4 URL |
[14] |
Sánchez-Gómez A, Díaz Y, Duarte-Salles T, et al. Prediabetes, type 2 diabetes mellitus and risk of parkinson's disease: A population-based cohort study[J]. Parkinsonism Relat Disord, 2021, 89: 22-27.
doi: 10.1016/j.parkreldis.2021.06.002 URL |
[15] |
Han K, Kim B, Lee SH, et al. A nationwide cohort study on diabetes severity and risk of parkinson disease[J]. NPJ Parkinsons Dis, 2023, 9(1): 11.
doi: 10.1038/s41531-023-00462-8 pmid: 36707543 |
[16] |
Rhea EM, Rask-Madsen C, Banks WA. Insulin transport across the blood-brain barrier can occur independently of the insulin receptor[J]. J Physiol, 2018, 596(19): 4753-4765.
doi: 10.1113/tjp.2018.596.issue-19 URL |
[17] |
Pomytkin I, Costa-Nunes JP, Kasatkin V, et al. insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment[J]. CNS Neurosci Ther, 2018, 24(9): 763-774.
doi: 10.1111/cns.12866 pmid: 29691988 |
[18] |
Morris JK, Bomhoff GL, Gorres BK, et al. Insulin resistance impairs nigrostriatal dopamine function[J]. Exp Neurol, 2011, 231(1): 171-180.
doi: 10.1016/j.expneurol.2011.06.005 pmid: 21703262 |
[19] |
Wang L, Zhai YQ, Xu LL, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice[J]. Exp Neurol, 2014, 251: 22-29.
doi: 10.1016/j.expneurol.2013.11.001 pmid: 24220636 |
[20] |
Chou SY, Chan L, Chung CC, et al. Altered insulin receptor substrate 1 phosphorylation in blood neuron-derived extracellular vesicles from patients with parkinson's disease[J]. Front Cell Dev Biol, 2020, 8: 564641.
doi: 10.3389/fcell.2020.564641 URL |
[21] | Hogg E, Athreya K, Basile C, et al. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with parkinson's disease[J]. J Parkinsons Dis, 2018, 8(2): 259-265. |
[22] |
Hipkiss AR. On the Relationship between energy metabolism, proteostasis, aging and parkinson's disease: Possible causative role of methylglyoxal and alleviative potential of carnosine[J]. Aging Dis, 2017, 8(3): 334-345.
doi: 10.14336/AD.2016.1030 |
[23] | 刘媛媛, 姚丽芬, 徐春晶, 等. 帕金森病患者血清中sRAGE水平及其临床意义[J]. 神经疾病与精神卫生, 2014, 14(2): 191-193. |
[24] | Chung SS, Ho EC, Lam KS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress[J]. J Am Soc Nephrol, 2003, 14(< W>8 Suppl 3): S233-S236. |
[25] | Pang L, Lian X, Liu H, et al. Understanding diabetic neuropathy: Focus on oxidative stress[J]. Oxid Med Cell Longev, 2020, 2020: 9524635. |
[26] | Alipour M, Salehi I, Ghadiri SF. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus[J]. Iran Red Crescent Med J, 2012, 14(4): 222-228. |
[27] |
Franco-Iborra S, Vila M, Perier C. The Parkinson disease mitochondrial hypothesis: Where are we at?[J]. Neuroscientist, 2016, 22(3): 266-277.
doi: 10.1177/1073858415574600 pmid: 25761946 |
[28] |
Benilova I, Karran E, De Strooper B. The toxic aβ oligomer and alzheimer's disease: An emperor in need of clothes[J]. Nat Neurosci, 2012, 15(3): 349-357.
doi: 10.1038/nn.3028 pmid: 22286176 |
[29] |
Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(6): 4094-4125.
doi: 10.1007/s12035-015-9337-5 pmid: 26198567 |
[30] |
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458.
doi: 10.1126/science.1202529 pmid: 21778362 |
[31] |
Ronan JL, Wu W, Crabtree GR. From neural development to cognition: Unexpected roles for chromatin[J]. Nat Rev Genet, 2013, 14(5): 347-359.
doi: 10.1038/nrg3413 pmid: 23568486 |
[32] |
Bartels AL, Willemsen AT, Doorduin J, et al. [11C]-PK11195 PET: Quantification of neuroinflammation and a monitor of anti-inflammatory treatment in parkinson's disease?[J]. Parkinsonism Relat Disord, 2010, 16(1): 57-59.
doi: 10.1016/j.parkreldis.2009.05.005 URL |
[33] |
Renaud J, Bassareo V, Beaulieu J, et al. Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: Preferential degeneration of the nigrostriatal motor pathway[J]. Neurobiol Aging, 2018, 69: 117-128.
doi: S0197-4580(18)30166-0 pmid: 29890391 |
[34] |
Satrom KM, Ennis K, Sweis BM, et al. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats[J]. J Neuroinflammation, 2018, 15(1): 82.
doi: 10.1186/s12974-018-1121-9 |
[35] |
Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in parkinson's disease: Mechanisms of action[J]. Drug Discov Today, 2016, 21(5): 802-818.
doi: 10.1016/j.drudis.2016.01.013 pmid: 26851597 |
[36] |
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet, 2006, 368(9548): 1696-1705.
doi: 10.1016/S0140-6736(06)69705-5 pmid: 17098089 |
[37] |
Aarsland D, Påhlhagen S, Ballard CG, et al. Depression in parkinson disease--epidemiology, mechanisms and management[J]. Nat Rev Neurol, 2011, 8(1): 35-47.
doi: 10.1038/nrneurol.2011.189 pmid: 22198405 |
[38] |
Li Y, Liu W, Li L, et al. D-Ala2-GIP-glu-PAL is neuroprotective in a chronic parkinson's disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation[J]. Eur J Pharmacol, 2017, 797: 162-172.
doi: S0014-2999(16)30762-2 pmid: 27913104 |
[39] |
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for alzheimer's and parkinson's disease[J]. Mol Psychiatry, 2023, 28(1): 217-229.
doi: 10.1038/s41380-022-01792-4 |
[40] | Zhang L, Zhang L, Li Y, et al. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of parkinson's disease[J]. J Parkinsons Dis, 2020, 10(2): 523-542. |
[41] |
Yuan Z, Li D, Feng P, et al. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of parkinson's disease[J]. Eur J Pharmacol, 2017, 812: 82-90.
doi: S0014-2999(17)30436-3 pmid: 28666800 |
[42] |
Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer's disease[J]. Acta Pharm Sin B, 2022, 12(2): 483-495.
doi: 10.1016/j.apsb.2021.11.003 pmid: 35256930 |
[43] |
Ryu YK, Park HY, Go J, et al. Metformin inhibits the development of L-DOPA-induced dyskinesia in a murine model of parkinson's disease[J]. Mol Neurobiol, 2018, 55(7): 5715-5726.
doi: 10.1007/s12035-017-0752-7 URL |
[44] |
Wahlqvist ML, Lee MS, Hsu CC, et al. Metformin-inclusive sulfonylurea therapy reduces the risk of parkinson's disease occurring with type 2 diabetes in a taiwanese population cohort[J]. Parkinsonism Relat Disord, 2012, 18(6): 753-758.
doi: 10.1016/j.parkreldis.2012.03.010 URL |
[45] | Shi Q, Liu S, Fonseca VA, et al. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus[J]. BMJ Open, 2019, 9(7): e024954. |
[46] |
Qiu X, Wang Q, Hou L, et al. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse parkinson's disease model[J]. Toxicol Lett, 2021, 349: 1-11.
doi: 10.1016/j.toxlet.2021.05.008 URL |
[47] |
Lietzau G, Magni G, Kehr J, et al. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging[J]. Neurobiol Aging, 2020, 89: 12-23.
doi: S0197-4580(20)30012-9 pmid: 32143981 |
[48] |
Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS[J]. Neuroscience, 2004, 123(1): 131-145.
doi: 10.1016/j.neuroscience.2003.08.064 pmid: 14667448 |
[49] |
Carta AR. PPAR-γ: Therapeutic prospects in parkinson's disease[J]. Curr Drug Targets, 2013, 14(7): 743-751.
pmid: 23469878 |
[50] |
Zhao H, Zhuo L, Sun Y, et al. Thiazolidinedione use and risk of parkinson's disease in patients with type 2 diabetes mellitus[J]. NPJ Parkinsons Dis, 2022, 8(1): 138.
doi: 10.1038/s41531-022-00406-8 pmid: 36271052 |
[51] | Brauer R, Bhaskaran K, Chaturvedi N, et al. Glitazone treatment and incidence of parkinson's disease among people with diabetes: A retrospective cohort study[J]. PLoS Med, 2015, 12(7): e1001854. |
[52] |
Chang YH, Yen SJ, Chang YH, et al. Pioglitazone and statins lower incidence of Parkinson disease in patients with diabetes mellitus[J]. Eur J Neurol, 2021, 28(2): 430-437.
doi: 10.1111/ene.v28.2 URL |
[53] |
Connolly JG, Bykov K, Gagne JJ. Thiazolidinediones and parkinson disease: A cohort study[J]. Am J Epidemiol, 2015, 182(11): 936-944.
doi: 10.1093/aje/kwv109 pmid: 26493264 |
[54] |
Rizzo MR, Barbieri M, Boccardi V, et al. Dipeptidyl peptidase-4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(9): 1122-1131.
doi: 10.1093/gerona/glu032 URL |
[55] |
ElGamal RZ, Tadros MG, Menze ET. Linagliptin counteracts rotenone's toxicity in non-diabetic rat model of parkinson's disease: Insights into the neuroprotective roles of DJ-1, SIRT-1/Nrf-2 and implications of HIF1-α[J]. Eur J Pharmacol, 2023, 941: 175498.
doi: 10.1016/j.ejphar.2023.175498 URL |
[56] |
Safar MM, Abdelkader NF, Ramadan E, et al. Novel mechanistic insights towards the repositioning of alogliptin in parkinson's disease[J]. Life Sci, 2021, 287: 120132.
doi: 10.1016/j.lfs.2021.120132 URL |
[57] |
Svenningsson P, Wirdefeldt K, Yin L, et al. Reduced incidence of parkinson's disease after dipeptidyl peptidase-4 inhibitors-a nationwide case-control study[J]. Mov Disord, 2016, 31(9): 1422-1423.
doi: 10.1002/mds.26734 URL |
[58] | Heni M, Hennige AM, Peter A, et al. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes[J]. PLoS One, 2011, 6(6): e21594. |
[59] |
Born J, Lange T, Kern W, et al. Sniffing neuropeptides: A transnasal approach to the human brain[J]. Nat Neurosci, 2002, 5(6): 514-516.
doi: 10.1038/nn849 pmid: 11992114 |
[60] |
Kullmann S, Blum D, Jaghutriz BA, et al. Central insulin modulates dopamine signaling in the human striatum[J]. J Clin Endocrinol Metab, 2021, 106(10): 2949-2961.
doi: 10.1210/clinem/dgab410 pmid: 34131733 |
[61] |
Iravanpour F, Dargahi L, Rezaei M, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of parkinson's disease[J]. CNS Neurosci Ther, 2021, 27(3): 308-319.
doi: 10.1111/cns.13609 pmid: 33497031 |
[62] |
Lopez VF, Luque GM, Brie B, et al. Dopaminergic drugs in type 2 diabetes and glucose homeostasis[J]. Pharmacol Res, 2016, 109: 74-80.
doi: 10.1016/j.phrs.2015.12.029 pmid: 26748034 |
[63] |
Tavares G, Marques D, Barra C, et al. Dopamine d2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes[J]. Mol Metab, 2021, 51: 101241.
doi: 10.1016/j.molmet.2021.101241 URL |
[64] |
Andersen IB, Andreassen M, Krogh J. the effect of dopamine agonists on metabolic variables in adults with type 2 diabetes: A systematic review with meta analysis and trial sequential analysis of randomized clinical trials[J]. Diabetes Obes Metab, 2021, 23(1): 58-67.
doi: 10.1111/dom.v23.1 URL |
[1] | 王九雪, 李娜, 靳玮, 王硕, 常雅君, 王天俊. 帕金森病患者血清尿酸、同型半胱氨酸和胱抑素C水平与运动症状及认知功能的相关性[J]. 临床荟萃, 2024, 39(2): 125-129. |
[2] | 金鑫, 吴金玲, 尹丽丽. 持续性植物状态促醒机制及治疗研究进展[J]. 临床荟萃, 2024, 39(2): 172-176. |
[3] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[4] | 周正新, 梁秋雄, 陈江瑛. 胰高血糖素样肽-1在帕金森病“肠-脑轴”中的作用研究进展[J]. 临床荟萃, 2023, 38(9): 855-858. |
[5] | 左腾, 王俊祥. 血清阴性类风湿关节炎发病机制的研究进展[J]. 临床荟萃, 2023, 38(8): 753-756. |
[6] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[7] | 贾丽娜, 吴美妮, 尹昌浩. 2型糖尿病认知功能障碍发病机制的研究进展[J]. 临床荟萃, 2023, 38(6): 554-558. |
[8] | 高玉叶, 徐海, 孙妍. 肥胖对呼吸功能的影响及机制[J]. 临床荟萃, 2023, 38(4): 381-384. |
[9] | 王凤华, 魏茂提. 干式桑拿疗法治疗慢性心力衰竭的研究进展[J]. 临床荟萃, 2023, 38(4): 369-372. |
[10] | 宗廷妮, 戴光荣, 赵晓宇, 李瑞风, 柴聪敏. 代谢相关脂肪性肝病靶向药物治疗进展[J]. 临床荟萃, 2023, 38(4): 373-376. |
[11] | 邹琳, 崔轶霞, 张娜娜, 陈思荣. 类风湿关节炎合并骨质疏松症发病机制和相关治疗药物对骨质疏松症影响的研究进展[J]. 临床荟萃, 2023, 38(3): 279-284. |
[12] | 王璐璐, 董露露, 江超, 王九雪, 常雅君, 王天俊. 弥散张量成像评估帕金森病合并非运动症状患者脑微结构的研究进展[J]. 临床荟萃, 2023, 38(2): 189-192. |
[13] | 彭艳, 白碧玥, 朱晓峰, 尹昌浩. 酒精使用障碍患者认知功能损害发病机制的研究进展[J]. 临床荟萃, 2023, 38(12): 1131-1134. |
[14] | 刘亚鑫, 郭岚, 王泽凯, 牛凯. 慢性肾脏病合并骨质疏松症治疗的研究进展[J]. 临床荟萃, 2023, 38(12): 1146-1149. |
[15] | 杨晓蓉, 周淑红, 潘亮, 郭莉江. 结缔组织病相关肺动脉高压的发病机制及其筛查的研究进展[J]. 临床荟萃, 2023, 38(10): 944-948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||