临床荟萃 ›› 2024, Vol. 39 ›› Issue (1): 92-96.doi: 10.3969/j.issn.1004-583X.2024.01.018
• 综述 • 上一篇
收稿日期:
2022-11-09
出版日期:
2024-01-20
发布日期:
2024-03-22
通讯作者:
崔轶霞, Email: yixia_cyx@126.com
Received:
2022-11-09
Online:
2024-01-20
Published:
2024-03-22
摘要:
类风湿关节炎(rheumatoid arthritis,RA)是一种慢性炎症性疾病,发生骨并发症时常伴有关节周围的骨丢失、骨侵蚀和全身性骨质疏松。RA患者关节畸形、活动障碍、糖皮质激素使用史都会增加骨质疏松症(osteoporosis,OP)的患病率和骨密度(bone mineral density,BMD)降低的风险。髋部和脊柱部的BMD测定对诊断OP具有重要意义。维生素 D的免疫活性形式1, 25-羟基维生素D3对自身免疫性疾病具有免疫调节作用,尤其是RA。因此,探索RA患者BMD与维生素D的关系,可能对RA患者OP的早期评估和预防具有重要的指导意义。
中图分类号:
张娜娜, 崔轶霞, 邹琳. 类风湿关节炎患者骨密度与维生素D相关性研究进展[J]. 临床荟萃, 2024, 39(1): 92-96.
[1] |
Ten Klooster PM, de Graaf N, Vonkeman HE. Association between pain phenotype and disease activity in rheumatoid arthritis patients: A non-interventional, longitudinal cohort study[J]. Arthritis Res Ther, 2019, 21(1):257.
doi: 10.1186/s13075-019-2042-4 pmid: 31783899 |
[2] |
Thambiah SC, Wong TH, Gupta ED, et al. Calculation of free and bioavailable vitamin D and its association with bone mineral density in Malaysian women[J]. Malays J Pathol, 2018, 40(3):287-294.
pmid: 30580359 |
[3] |
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis[J]. Lancet, 2017, 389(10086):2328-2337.
doi: S0140-6736(17)31472-1 pmid: 28612747 |
[4] |
Rydell E, Forslind K, Nilsson JÅ, et al. Predictors of radiographic erosion and joint space narrowing progression in patients with early rheumatoid arthritis: A cohort study[J]. Arthritis Res Ther, 2021, 23(1):27.
doi: 10.1186/s13075-020-02413-7 pmid: 33446222 |
[5] | 邹晋梅, 李思吟, 杨静, 等. 类风湿关节炎患者血清25-(OH)D3水平与骨密度的关系[J]. 中国医药导报, 2019, 16(19):109-112. |
[6] |
Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, et al. Visfatin connection: Present and future in osteoarthritis and osteoporosis[J]. J Clin Med, 2019, 8(8):1178.
doi: 10.3390/jcm8081178 URL |
[7] | Bruno D, Fedele AL, Tolusso B, et al. Systemic bone density at disease onset is associated with joint erosion progression in early naive to treatment rheumatoid arthritis: A prospective 12-month follow-up open-label study[J]. Front Med (Lausanne), 2021, 8:613889. |
[8] |
Mangnus L, van Steenbergen HW, Reijnierse M, et al. Bone mineral density loss in clinically suspect arthralgia is associated with subclinical inflammation and progression to clinical arthritis[J]. Scand J Rheumatol, 2017, 46(5):364-368.
doi: 10.1080/03009742.2017.1299217 pmid: 28580826 |
[9] | 鲍晓, 何成松. 糖皮质激素诱发骨质疏松的类风湿关节炎患者血清25-羟维生素D的表达与骨密度的关系[J]. 中国老年学, 2018, 38(2):429-431. |
[10] | Zhu Z, Hu G, Jin F, et al. Correlation of osteoarthritis or rheumatoid arthritis with bone mineral density in adults aged 20-59 years[J]. Orthop Surg Res, 2021, 16(1):190. |
[11] |
Cheng TT, Lai HM, Yu SF, et al. The impact of low-dose glucocorticoids on disease activity, bone mineral density, fragility fractures, and 10-year probability of fractures in patients with rheumatoid arthritis[J]. J Investig Med, 2018, 66(6):1004-1007.
doi: 10.1136/jim-2018-000723 URL |
[12] |
Berardi S, Corrado A, Maruotti N, et al. Osteoblast role in the pathogenesis of rheumatoid arthritis[J]. Mol Biol Rep, 2021, 48(3):2843-2852.
doi: 10.1007/s11033-021-06288-y |
[13] |
Hecht C, Englbrecht M, Rech J, et al. Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA[J]. Ann Rheum Dis, 2015, 74(12):2151-2156.
doi: 10.1136/annrheumdis-2014-205428 pmid: 25115448 |
[14] | Kurowska W, Slowinska I, Krogulec Z, et al. Antibodies to Citrullinated Proteins (ACPA) associate with markers of osteoclast activation and bone destruction in the bone marrow of patients with rheumatoid arthritis[J]. Clin Med, 2021, 10(8):1778. |
[15] | 王长磊, 孔纯玉, 戚务芳. 类风湿性关节炎患者骨代谢指标与骨密度的临床相关性研究[J]. 河北医药, 2019, 41 (18):2816-2818. |
[16] | 王鑫, 俞钟明, 孙佳颖. 类风湿关节炎不同疾病活动度下骨代谢指标的变化[J]. 浙江医学, 2018, 40(22):2462-2465. |
[17] |
Delgado-Calle J, Tu X, Pacheco-Costa R, et al. Control of bone anabolism in response to mechanical loading and PTH by distinct mechanisms downstream of the PTH receptor[J]. J Bone Miner Res, 2017, 32(3):522-535.
doi: 10.1002/jbmr.3011 pmid: 27704638 |
[18] |
Jelsness-Jørgensen LP, Grøvle L, Julsrud Haugen A. Association between vitamin D and fatigue in patients with rheumatoid arthritis: A cross-sectional study[J]. BMJ Open, 2020, 10(2):e034935.
doi: 10.1136/bmjopen-2019-034935 URL |
[19] |
Martens PJ, Gysemans C, Verstuyf A, et al. Vitamin D's effect on immune function[J]. Nutrients, 2020, 12(5):1248.
doi: 10.3390/nu12051248 URL |
[20] | Di Spigna G, Del Puente A, Covelli B, et al. Vitamin D receptor polymorphisms as tool for early screening of severe bone loss in women patients with rheumatoid arthritis[J]. Eur Rev Med Pharmacol Sci, 2016, 20(22):4664-4669. |
[21] |
Wen HY, Luo J, Li XF, et al. 1, 25-dihydroxyvitamin D3 modulates T cell differentiation and impacts on the production of cytokines from Chinese Han patients with early rheumatoid arthritis[J]. Immunol Res, 2019, 67(1):48-57.
doi: 10.1007/s12026-018-9033-4 |
[22] |
Testa D, Calvacchi S, Petrelli F, et al. One year in review 2021: Pathogenesis of rheumatoid arthritis[J]. Clin Exp Rheumatol, 2021, 39(3):445-452.
doi: 10.55563/clinexprheumatol/j1l5l3 pmid: 34018918 |
[23] |
Gkekas NK, Anagnostis P, Paraschou V, et al. The effect of vitamin D plus protein supplementation on sarcopenia: A systematic review and meta-analysis of randomized controlled trials[J]. Maturitas, 2021, 145:56-63.
doi: 10.1016/j.maturitas.2021.01.002 pmid: 33541563 |
[24] |
Paradowska-Gorycka A, Wajda A, Romanowska-Próchnicka K, et al. Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis[J]. Front Immunol, 2020, 11:572858.
doi: 10.3389/fimmu.2020.572858 URL |
[25] |
Mendes MM, Charlton K, Thakur S, et al. Future perspectives in addressing the global issue of vitamin D deficiency[J]. Proc Nutr Soc, 2020, 79(2):246-251.
doi: 10.1017/S0029665119001538 pmid: 32090719 |
[26] |
Bagheri-Hosseinabadi Z, Imani D, Yousefi H, et al. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): Systematic review and meta-analysis[J]. Clin Rheumatol, 2020, 39(12):3555-3569.
doi: 10.1007/s10067-020-05143-y |
[27] |
Lin J, Liu J, Davies ML, et al. Serum Vitamin D level and rheumatoid arthritis disease activity: Review and meta-analysis[J]. PLoS One, 2016, 11(1):e0146351.
doi: 10.1371/journal.pone.0146351 URL |
[28] |
Charoenngam N, Shirvani A, Kalajian TA, et al. The effect of various doses of oral vitamin D3 supplementation on gut microbiota in healthy adults: A randomized, double-blinded, dose-response study[J]. Anticancer Res, 2020, 40(1):551-556.
doi: 10.21873/anticanres.13984 pmid: 31892611 |
[29] |
Merlino LA, Curtis J, Mikuls TR, et al. Vitamin D intake is inversely associated with rheumatoid arthritis: Results from the Iowa Women's Health Study[J]. Arthritis Rheum, 2004, 50(1):72-77.
doi: 10.1002/art.v50:1 URL |
[30] |
Meena N, Singh Chawla SP, Garg R, et al. Assessment of vitamin D in rheumatoid arthritis and its correlation with disease activity[J]. J Nat Sci Biol Med, 2018, 9(1):54-58.
doi: 10.4103/jnsbm.JNSBM_128_17 URL |
[31] | Aslam MM, John P, Bhatti A, et al. Vitamin D as a principal factor in mediating rheumatoid arthritis-derived immune response[J]. Biomed Res Int, 2019, 2019:3494937. |
[32] |
Harrison SR, Li D, Jeffery LE, et al. Vitamin D, autoimmune disease and rheumatoid arthritis[J]. Calcif Tissue Int, 2020, 106(1):58-75.
doi: 10.1007/s00223-019-00577-2 |
[33] |
Marozik P, Rudenka A, Kobets K, et al. Vitamin D status, bone mineral density, and VDR gene polymorphism in a cohort of belarusian postmenopausal women[J]. Nutrients, 2021, 13(3):837.
doi: 10.3390/nu13030837 URL |
[34] |
Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: Oxidative stress, energy metabolism and anabolic state[J]. Eur J Appl Physiol, 2019, 119(4):825-839.
doi: 10.1007/s00421-019-04104-x pmid: 30830277 |
[35] |
Wong TH, Gupta ED, Radhakrishnan AK, et al. Effects of 25-hydroxyvitamin D and vitamin D-binding protein on bone mineral density and disease activity in Malaysian patients with rheumatoid arthritis[J]. Int J Rheum Dis, 2018, 21(5):992-1000.
doi: 10.1111/1756-185X.13048 pmid: 28217867 |
[36] |
Zhao J, Xia W, Nie M, et al. The levels of bone turnover markers in Chinese postmenopausal women: Peking Vertebral Fracture study[J]. Menopause, 2011, 18(11):1237-1243.
doi: 10.1097/gme.0b013e31821d7ff7 pmid: 21747303 |
[37] |
Kweon SM, Sohn DH, Park JH, et al. Male patients with rheumatoid arthritis have an increased risk of osteoporosis: Frequency and risk factors[J]. Medicine (Baltimore), 2018, 97(24):e11122.
doi: 10.1097/MD.0000000000011122 URL |
[38] | Liu YQ, Liu Y, Chen ZY, et al. Rheumatoid arthritis and osteoporosis: A bi-directional Mendelian randomization study[J]. Aging (Albany NY), 2021, 13(10):14109-14130. |
[39] |
Pérez-Castrillón JL, Dueñas-Laita A, Brandi ML, et al. Calcifediol is superior to cholecalciferol in improving vitamin D status in postmenopausal women: A randomized trial[J]. Bone Miner Res, 2021, 36(10):1967-1978.
doi: 10.1002/jbmr.4387 URL |
[40] |
Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y[J]. Am J Clin Nutr, 2004, 80(3):752-758.
doi: 10.1093/ajcn/80.3.752 pmid: 15321818 |
[41] |
Hwang S, Choi HS, Kim KM, et al. Associations between serum 25-hydroxyvitamin D and bone mineral density and proximal femur geometry in Koreans: the Korean National Health and Nutrition Examination Survey (KNHANES) 2008-2009[J]. Osteoporos Int, 2015, 26(1):163-171.
doi: 10.1007/s00198-014-2877-0 pmid: 25262060 |
[42] |
Colditz J, Thiele S, Baschant U, et al. Postnatal skeletal deletion of dickkopf-1 increases bone formation and bone volume in male and female mice, despite increased sclerostin expression[J]. J Bone Miner Res, 2018, 33(9):1698-1707.
doi: 10.1002/jbmr.3463 pmid: 29734465 |
[43] | 钱鑫, 赵智明, 张蓓蓓, 等. 青藤碱对类风湿关节炎患者炎性细胞因子及免疫系统的影响[J]. 中药材, 2018, 41(5):1226-1228. |
[44] | Kareem R, Botleroo RA, Bhandari R, et al. The impact of rheumatoid arthritis on bone loss: Links to osteoporosis and osteopenia[J]. Cureus, 2021, 13(8):e17519. |
[45] |
Adami G, Saag KG. Osteoporosis pathophysiology, epidemiology, and screening in rheumatoid arthritis[J]. Curr Rheumatol Rep, 2019, 21(7):34.
doi: 10.1007/s11926-019-0836-7 pmid: 31123839 |
[46] |
Kim JW, Jung JY, Kim HA, et al. Anti-inflammatory effects of low-dose glucocorticoids compensate for their detrimental effects on bone mineral density in patients with rheumatoid arthritis[J]. J Clin Med, 2021, 10(13):2944.
doi: 10.3390/jcm10132944 URL |
[1] | 王琦, 陈宏. 维生素D在支气管哮喘和慢性阻塞性肺疾病治疗中的应用进展[J]. 临床荟萃, 2024, 39(1): 88-91. |
[2] | 左腾, 王俊祥. 血清阴性类风湿关节炎发病机制的研究进展[J]. 临床荟萃, 2023, 38(8): 753-756. |
[3] | 蒋炜, 田敏涛, 李学渊. 血清营养指标与老年骨质疏松症关系的研究进展[J]. 临床荟萃, 2023, 38(7): 668-672. |
[4] | 刘亚鑫, 郭岚, 王泽凯, 牛凯. 慢性肾脏病合并骨质疏松症治疗的研究进展[J]. 临床荟萃, 2023, 38(12): 1146-1149. |
[5] | 锡洪敏, 杨丽娟, 尹向云, 杨萍, 马丽丽, 李向红. 动态监测极早产儿血25(OH)D水平及其对肺部疾病的影响[J]. 临床荟萃, 2022, 37(8): 717-722. |
[6] | 孙妍, 高玉叶, 高硕. 维生素D结合蛋白在糖尿病肾脏病中的作用机制探讨[J]. 临床荟萃, 2022, 37(6): 568-571. |
[7] | 王玲玲, 吴金岚, 吴维, 沈士朋, 迟雁青, 刘茂东. 维生素D及其类似物在慢性肾脏病非透析患者中的肾脏保护作用的荟萃分析[J]. 临床荟萃, 2022, 37(12): 1081-1088. |
[8] | 梅胜梅, 周俊英. 维生素D缺乏与自身免疫性肝炎相关性研究进展[J]. 临床荟萃, 2021, 36(9): 856-860. |
[9] | 王朦朦, 王颖, 陈赵静, 徐贤荣, 杨军, 李红娟. 门冬胰岛素联合维生素D治疗对妊娠期糖尿病患者血糖水平及围产儿并发症影响Meta分析[J]. 临床荟萃, 2021, 36(7): 581-586. |
[10] | 赵伟凤, 马春宇. 25-(OH)D3与冠心病患者冠状动脉狭窄程度的相关性[J]. 临床荟萃, 2021, 36(11): 981-985. |
[11] | 程向娟,王琼康,李静. 维生素D2不同用药周期方案对2型糖尿病并心脏自主神经病变的疗效[J]. 临床荟萃, 2020, 35(8): 711-713. |
[12] | 林晓霞, 柯钟灵, 陈燕惠, 陈慧, 陈先睿. 维生素D水平与抽动障碍关系的meta分析[J]. 临床荟萃, 2020, 35(12): 1061-1066. |
[13] | 孙甜甜a,徐婷a,陈璐b,狄佳c,王雯a,吴敏a. 类风湿关节炎患者肺部感染的临床特点及其危险因素分析[J]. 临床荟萃, 2020, 35(1): 47-53. |
[14] | 王江丽1,刘茂东2,迟雁青2,张益民3,李英2. 尿泛素-核糖体融合蛋白52和尿维生素D结合蛋白在糖尿病肾病患者的表达及意义[J]. 临床荟萃, 2019, 34(6): 541-544. |
[15] | 王马艳1, 韩兴发3, 杨文慧1, 姜盼盼1, 刘洋1, 刘华2. 男性阻塞性睡眠呼吸暂停低通气综合征对2型糖尿病患者骨代谢及骨密度的影响[J]. 临床荟萃, 2019, 34(10): 894-897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||