Clinical Focus ›› 2022, Vol. 37 ›› Issue (10): 889-898.doi: 10.3969/j.issn.1004-583X.2022.10.002
Previous Articles Next Articles
Ye Qian1, Ling Zhi2,3, Yin Xudong2()
Received:
2021-10-18
Online:
2022-10-20
Published:
2022-11-26
Contact:
Yin Xudong
E-mail:090005@yzu.edu.cn
CLC Number:
Ye Qian, Ling Zhi, Yin Xudong. Sarcopenia on immune checkpoint inhibitors in solid tumor patients with sarcopenia: A meta-analysis[J]. Clinical Focus, 2022, 37(10): 889-898.
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.10.002
作者 | 发表年份 | 地区 | 样本量 | 肿瘤类型 | ICIs种类 | 诊断指标 | 测量指标 | 分界值 | 结果 | 质量评价 |
---|---|---|---|---|---|---|---|---|---|---|
Dercle[ | 2016 | 法国 | 251 | 实体瘤 | PD-1/PD-L1抑制剂 | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | OS | 高(8分) |
Shiroyama[ | 2019 | 日本 | 42 | 肺癌 | Pembrolizumab Nivolumab | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 | PFS, OS, DCR | 高(8分) |
Nishioka[ | 2019 | 日本 | 38 | 肺癌 | Pembrolizumab Nivolumab | PMA by CT | 腰2-3层面骨骼肌 | ▲PMA≥ 10% mPMA | PFS, OS, DCR | 高(8分) |
Cortellini[ | 2020 | 意大利 | 100 | 实体瘤 | Pembrolizumab Nivolumab Atezolizumb others | SMI by CT | 腰3层面骨骼肌 | 男性:48.4 cm2/m2 for BMI<25, 50.2 cm2/m2 for BMI≥25 女性:36.9 cm2/m2 for BMI<25, 59.6 cm2/m2 for BMI≥25 | PFS, OS, ORR, irAEs | 高(7分) |
Crombé[ | 2020 | 法国 | 117 | 实体瘤 | PD-1/PD-L1抑制剂 | PMI by CT | 腰3层面腰大肌 | ▲PMI<三分位数最小值 | PFS | 高(7分) |
Roch[ | 2020 | 法国 | 142 | 肺癌 | Pembrolizumab Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:52.4 cm2/m2 女性:38.5 cm2/m2 ▲SMI≥5% mSMI | PFS, OS, DCR | 高(8分) |
Takada[ | 2020 | 日本 | 103 | 肺癌 | Pembrolizumab Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:25.63 cm2/m2 女性:21.73 cm2/m2 | PFS, OS, DCR, ORR | 高(7分) |
Bilen[ | 2020 | 美国 | 90 | 实体瘤 | NR | SMI by CT | 腰3层面骨骼肌 | 男性:55.97 cm2/m2 女性:37.39 cm2/m2 | PFS, OS | 高(7分) |
Kim[ | 2020 | 韩国 | 102 | 肝癌 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:42 cm2/m2 女性:38 cm2/m2 | PFS, OS, DCR, ORR | 高(8分) |
Kano[ | 2020 | 日本 | 31 | 胃癌 | Nivolumab | PMI by CT | 腰3层面腰大肌 | 男性:3.6 cm2/m2 女性:2.9 cm2/m2 | PFS,DCR,ORR, irAEs | 高(7分) |
Shimizu[ | 2020 | 日本 | 27 | 尿路上皮癌 | Pembrolizumab | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 ▲PMI≥10% mPMI | PFS, OS, irAEs | 高(8分) |
Fukushima[ | 2020 | 日本 | 28 | 尿路上皮癌 | Pembrolizumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 女性:25 cm2/m2 | PFS,ORR,irAEs | 高(7分) |
Corellini[ | 2020 | 意大利 | 23 | 肺癌 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | PFS,OS,ORR, irAEs | 高(7分) |
Nishioka[ | 2021 | 日本 | 156 | 肺癌 | Pembrolizumab Nivolumab Atezolizumb | SMI和SMA by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | PFS, ORR | 高(7分) |
Daly[ | 2017 | 爱尔兰 | 84 | 黑色素瘤 | Ipilimumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI < 25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 ▲SMI≥7.5% mSMI | OS,irAEs | 中(6分) |
Deike-Hofmann[ | 2019 | 德国 | 147 | 黑色素瘤 | Ipilimumab | PMD by CT | 腰3层面腰大肌 | 45HU(四分位数最小值) | PFS | 中(6分) |
Chu[ | 2020 | 加拿大 | 97 | 黑色素瘤 | Ipilimumab | SMD by CT | 腰3层面骨骼肌 | 42HU for BMI<25, 20HU for BMI≥25 | PFS, OS, DCR, ORR | 中(6分) |
Hirsch[ | 2020 | 法国 | 92 | 实体瘤 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | irAEs | 中(6分) |
Hu[ | 2020 | 美国 | 156 | 黑色素瘤 | Pembrolizumab | PMI by CT | 腰3层面腰大肌 | 男性:5.45 cm2/m2 女性:3.85 cm2/m2 | ORR, irAEs | 中(6分) |
Young[ | 2020 | 美国 | 287 | 黑色素瘤 | Ipilimumab+Nivolumab Pembrolizumab Nivolumab Atezolizumb | SMI和SMD by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25 kg/m2, 53 cm2/m2 for BMI ≥ 25 kg/m2 女性: 41 cm2/m2 41HU for BMI<25 kg/m2, 33HU for BMI≥25 kg/m2 | PFS, OS | 中(6分) |
Akce[ | 2020 | 美国 | 57 | 肝癌 | PD-1抑制剂 | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 女性:39 cm2/m2 | PFS, OS | 中(6分) |
Minami[ | 2020 | 日本 | 74 | 肺癌 | Pembrolizumab Nivolumab Atezolizumb | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 | PFS, OS, DCR, ORR | 中(6分) |
Kim[ | 2020 | 韩国 | 149 | 胃癌 | Pembrolizumab Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:49 cm2/m2 女性:31 cm2/m2 | PFS, OS, DCR, ORR | 中(6分) |
Tsukgaoshi[ | 2020 | 日本 | 30 | 肺癌 | Nivolumab | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 | ORR | 中(6分) |
Youn[ | 2021 | 加拿大 | 44 | 黑色素瘤 | Ipilimumab+Nivolumab Nivolumab | SMD by CT | 腰3层面骨骼肌 | 25.65HU | OS | 中(6分) |
Loosen[ | 2021 | 德国 | 88 | 实体瘤 | PD-1/PD-L1抑制剂 | SMI by CT | 腰3层面骨骼肌 | ▲SMI≥6.18 mm2/cm | OS | 中(6分) |
Magri[ | 2019 | 意大利 | 46 | 肺癌 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | NR | OS | 低(4分) |
作者 | 发表年份 | 地区 | 样本量 | 肿瘤类型 | ICIs种类 | 诊断指标 | 测量指标 | 分界值 | 结果 | 质量评价 |
---|---|---|---|---|---|---|---|---|---|---|
Dercle[ | 2016 | 法国 | 251 | 实体瘤 | PD-1/PD-L1抑制剂 | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | OS | 高(8分) |
Shiroyama[ | 2019 | 日本 | 42 | 肺癌 | Pembrolizumab Nivolumab | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 | PFS, OS, DCR | 高(8分) |
Nishioka[ | 2019 | 日本 | 38 | 肺癌 | Pembrolizumab Nivolumab | PMA by CT | 腰2-3层面骨骼肌 | ▲PMA≥ 10% mPMA | PFS, OS, DCR | 高(8分) |
Cortellini[ | 2020 | 意大利 | 100 | 实体瘤 | Pembrolizumab Nivolumab Atezolizumb others | SMI by CT | 腰3层面骨骼肌 | 男性:48.4 cm2/m2 for BMI<25, 50.2 cm2/m2 for BMI≥25 女性:36.9 cm2/m2 for BMI<25, 59.6 cm2/m2 for BMI≥25 | PFS, OS, ORR, irAEs | 高(7分) |
Crombé[ | 2020 | 法国 | 117 | 实体瘤 | PD-1/PD-L1抑制剂 | PMI by CT | 腰3层面腰大肌 | ▲PMI<三分位数最小值 | PFS | 高(7分) |
Roch[ | 2020 | 法国 | 142 | 肺癌 | Pembrolizumab Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:52.4 cm2/m2 女性:38.5 cm2/m2 ▲SMI≥5% mSMI | PFS, OS, DCR | 高(8分) |
Takada[ | 2020 | 日本 | 103 | 肺癌 | Pembrolizumab Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:25.63 cm2/m2 女性:21.73 cm2/m2 | PFS, OS, DCR, ORR | 高(7分) |
Bilen[ | 2020 | 美国 | 90 | 实体瘤 | NR | SMI by CT | 腰3层面骨骼肌 | 男性:55.97 cm2/m2 女性:37.39 cm2/m2 | PFS, OS | 高(7分) |
Kim[ | 2020 | 韩国 | 102 | 肝癌 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:42 cm2/m2 女性:38 cm2/m2 | PFS, OS, DCR, ORR | 高(8分) |
Kano[ | 2020 | 日本 | 31 | 胃癌 | Nivolumab | PMI by CT | 腰3层面腰大肌 | 男性:3.6 cm2/m2 女性:2.9 cm2/m2 | PFS,DCR,ORR, irAEs | 高(7分) |
Shimizu[ | 2020 | 日本 | 27 | 尿路上皮癌 | Pembrolizumab | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 ▲PMI≥10% mPMI | PFS, OS, irAEs | 高(8分) |
Fukushima[ | 2020 | 日本 | 28 | 尿路上皮癌 | Pembrolizumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 女性:25 cm2/m2 | PFS,ORR,irAEs | 高(7分) |
Corellini[ | 2020 | 意大利 | 23 | 肺癌 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | PFS,OS,ORR, irAEs | 高(7分) |
Nishioka[ | 2021 | 日本 | 156 | 肺癌 | Pembrolizumab Nivolumab Atezolizumb | SMI和SMA by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | PFS, ORR | 高(7分) |
Daly[ | 2017 | 爱尔兰 | 84 | 黑色素瘤 | Ipilimumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI < 25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 ▲SMI≥7.5% mSMI | OS,irAEs | 中(6分) |
Deike-Hofmann[ | 2019 | 德国 | 147 | 黑色素瘤 | Ipilimumab | PMD by CT | 腰3层面腰大肌 | 45HU(四分位数最小值) | PFS | 中(6分) |
Chu[ | 2020 | 加拿大 | 97 | 黑色素瘤 | Ipilimumab | SMD by CT | 腰3层面骨骼肌 | 42HU for BMI<25, 20HU for BMI≥25 | PFS, OS, DCR, ORR | 中(6分) |
Hirsch[ | 2020 | 法国 | 92 | 实体瘤 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25, 53 cm2/m2 for BMI≥25 女性: 41 cm2/m2 | irAEs | 中(6分) |
Hu[ | 2020 | 美国 | 156 | 黑色素瘤 | Pembrolizumab | PMI by CT | 腰3层面腰大肌 | 男性:5.45 cm2/m2 女性:3.85 cm2/m2 | ORR, irAEs | 中(6分) |
Young[ | 2020 | 美国 | 287 | 黑色素瘤 | Ipilimumab+Nivolumab Pembrolizumab Nivolumab Atezolizumb | SMI和SMD by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 for BMI<25 kg/m2, 53 cm2/m2 for BMI ≥ 25 kg/m2 女性: 41 cm2/m2 41HU for BMI<25 kg/m2, 33HU for BMI≥25 kg/m2 | PFS, OS | 中(6分) |
Akce[ | 2020 | 美国 | 57 | 肝癌 | PD-1抑制剂 | SMI by CT | 腰3层面骨骼肌 | 男性:43 cm2/m2 女性:39 cm2/m2 | PFS, OS | 中(6分) |
Minami[ | 2020 | 日本 | 74 | 肺癌 | Pembrolizumab Nivolumab Atezolizumb | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 | PFS, OS, DCR, ORR | 中(6分) |
Kim[ | 2020 | 韩国 | 149 | 胃癌 | Pembrolizumab Nivolumab | SMI by CT | 腰3层面骨骼肌 | 男性:49 cm2/m2 女性:31 cm2/m2 | PFS, OS, DCR, ORR | 中(6分) |
Tsukgaoshi[ | 2020 | 日本 | 30 | 肺癌 | Nivolumab | PMI by CT | 腰3层面腰大肌 | 男性:6.36 cm2/m2 女性:3.92 cm2/m2 | ORR | 中(6分) |
Youn[ | 2021 | 加拿大 | 44 | 黑色素瘤 | Ipilimumab+Nivolumab Nivolumab | SMD by CT | 腰3层面骨骼肌 | 25.65HU | OS | 中(6分) |
Loosen[ | 2021 | 德国 | 88 | 实体瘤 | PD-1/PD-L1抑制剂 | SMI by CT | 腰3层面骨骼肌 | ▲SMI≥6.18 mm2/cm | OS | 中(6分) |
Magri[ | 2019 | 意大利 | 46 | 肺癌 | Nivolumab | SMI by CT | 腰3层面骨骼肌 | NR | OS | 低(4分) |
组别 | HR(95%CI) | P值 |
---|---|---|
肿瘤类型 | ||
肺癌 | 1.57(1.22~2.0) | 0.000 |
黑色素瘤 | 1.41(0.84~2.38) | 0.190 |
其他 | 1.73(1.29~2.32) | 0.000 |
ICIs类型 | ||
Pembrolizumab | 4.0(1.18~13.56) | 0.030 |
nivolumab | 1.49(0.88~2.52) | 0.013 |
Ipilimumab | 2.12(1.17~3.84) | 0.010 |
其他 | 1.55(1.22~1.97) | 0.000 |
诊断指标 | ||
SMI | 1.62(1.33~1.97) | 0.000 |
PMI | 1.97(0.88~4.42) | 0.100 |
SMD | 1.47(0.79~2.75) | 0.230 |
PMD | - | - |
地区 | ||
亚洲 | 1.41(0.98~2.01) | 0.060 |
欧美 | 1.71(1.31~2.22) | 0.000 |
组别 | HR(95%CI) | P值 |
---|---|---|
肿瘤类型 | ||
肺癌 | 1.57(1.22~2.0) | 0.000 |
黑色素瘤 | 1.41(0.84~2.38) | 0.190 |
其他 | 1.73(1.29~2.32) | 0.000 |
ICIs类型 | ||
Pembrolizumab | 4.0(1.18~13.56) | 0.030 |
nivolumab | 1.49(0.88~2.52) | 0.013 |
Ipilimumab | 2.12(1.17~3.84) | 0.010 |
其他 | 1.55(1.22~1.97) | 0.000 |
诊断指标 | ||
SMI | 1.62(1.33~1.97) | 0.000 |
PMI | 1.97(0.88~4.42) | 0.100 |
SMD | 1.47(0.79~2.75) | 0.230 |
PMD | - | - |
地区 | ||
亚洲 | 1.41(0.98~2.01) | 0.060 |
欧美 | 1.71(1.31~2.22) | 0.000 |
组别 | HR(95%CI) | P值 |
---|---|---|
肿瘤类型 | ||
肺癌 | 1.36(0.95~1.95) | 0.090 |
黑色素瘤 | 1.24(0.97~1.59) | 0.090 |
其他 | 1.6(1.26~2.02) | <0.01 |
ICIs类型 | ||
Pembrolizumab | 2.98(1.53~5.80) | 0.001 |
Nivolumab | 1.64(1.06~2.55) | 0.030 |
Ipilimumab | 1.63(1.19~2.23) | 0.002 |
其他 | 1.26(1.04~1.54) | 0.020 |
诊断指标 | ||
SMI | 1.47(1.22~1.77) | <0.01 |
PMI | 1.87(0.94~3.59) | 0.070 |
SMD | 0.97(0.70~1.34) | 0.860 |
PMD | 1.67(1.14~2.45) | 0.008 |
地区 | ||
亚洲 | 1.44(1.03~2.01) | 0.030 |
欧美 | 1.38(1.15~1.66) | 0.000 |
组别 | HR(95%CI) | P值 |
---|---|---|
肿瘤类型 | ||
肺癌 | 1.36(0.95~1.95) | 0.090 |
黑色素瘤 | 1.24(0.97~1.59) | 0.090 |
其他 | 1.6(1.26~2.02) | <0.01 |
ICIs类型 | ||
Pembrolizumab | 2.98(1.53~5.80) | 0.001 |
Nivolumab | 1.64(1.06~2.55) | 0.030 |
Ipilimumab | 1.63(1.19~2.23) | 0.002 |
其他 | 1.26(1.04~1.54) | 0.020 |
诊断指标 | ||
SMI | 1.47(1.22~1.77) | <0.01 |
PMI | 1.87(0.94~3.59) | 0.070 |
SMD | 0.97(0.70~1.34) | 0.860 |
PMD | 1.67(1.14~2.45) | 0.008 |
地区 | ||
亚洲 | 1.44(1.03~2.01) | 0.030 |
欧美 | 1.38(1.15~1.66) | 0.000 |
[1] |
Floudas CS, Brar G, Greten TF. Immunotherapy: Current status and future perspectives[J]. Dig Dis Sci, 2019, 64(4):1030-1040.
doi: 10.1007/s10620-019-05516-7 URL |
[2] |
Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors[J]. Cancer Cell, 2020, 37(4):443-455.
doi: S1535-6108(20)30157-4 pmid: 32289269 |
[3] |
Bai R, Lv Z, Xu D, et al. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors[J]. Biomark Res, 2020, 8:34.
doi: 10.1186/s40364-020-00209-0 pmid: 32864131 |
[4] |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(4):601.
doi: 10.1093/ageing/afz046 pmid: 31081853 |
[5] |
Morosano ME, Menoyo IM, Tomat MF, et al. A simple anthropometric tool for the assessment of pre-sarcopenia in postmenopausal women[J]. Climacteric, 2017, 20(3):256-261.
doi: 10.1080/13697137.2017.1309017 pmid: 28379719 |
[6] |
Ofek Shlomai N, Rao S, Patole S. Efficacy of interventions to improve hand hygiene compliance in neonatal units: A systematic review and meta-analysis[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(5):887-897.
doi: 10.1007/s10096-015-2313-1 URL |
[7] |
Dercle L, Ammari S, Champiat S, et al. Rapid and objective CT scan prognostic scoring identifies Metastatic patients with long-term clinical benefit on anti-PD-1/-L1 therapy[J]. Eur J Cancer, 2016, 65:33-42.
doi: 10.1016/j.ejca.2016.05.031 URL |
[8] |
Shiroyama T, Nagatomo I, Koyama S, et al. Impact of sarcopenia in patients with advanced non-small cell lung cancer treated with PD-1 inhibitors: A preliminary retrospective study[J]. Sci Rep, 2019, 9(1):2447.
doi: 10.1038/s41598-019-39120-6 pmid: 30792455 |
[9] |
Nishioka N, Uchino J, Hirai S, et al. Association of sarcopenia with and efficacy of anti-PD-1/PD-L1 therapy in non-small-cell lung cancer[J]. J Clin Med, 2019, 8(4):450.
doi: 10.3390/jcm8040450 URL |
[10] |
Cortellini A, Bozzetti F, Palumbo P, et al. Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: A multicenter real-life study[J]. Sci Rep, 2020, 10(1):1456.
doi: 10.1038/s41598-020-58498-2 pmid: 31996766 |
[11] |
Crombé A, Kind M, Toulmonde M, et al. Impact of CT-based body composition parameters at baseline, their early changes and response in metastatic cancer patients treated with immune checkpoint inhibitors[J]. Eur J Radiol, 2020, 133:109340.
doi: 10.1016/j.ejrad.2020.109340 URL |
[12] |
Roch B, Coffy A, Jean-Baptiste S, et al. Cachexia-sarcopenia as a determinant of disease control rate and survival in non-small lung cancer patients receiving immune-checkpoint inhibitors[J]. Lung Cancer, 2020, 143:19-26.
doi: 10.1016/j.lungcan.2020.03.003 URL |
[13] |
Takada K, Yoneshima Y, Tanaka K, et al. Clinical impact of skeletal muscle area in patients with non-small cell lung cancer treated with anti-PD-1 inhibitors[J]. J Cancer Res Clin Oncol, 2020, 146(5):1217-1225.
doi: 10.1007/s00432-020-03146-5 pmid: 32025867 |
[14] |
Bilen MA, Martini DJ, Liu Y, et al. Combined effect of sarcopenia and systemic inflammation on survival in patients with advanced stage cancer treated with immunotherapy[J]. Oncologist, 2020, 25(3):e528-e535.
doi: 10.1634/theoncologist.2019-0751 URL |
[15] |
Kim N, Yu JI, Park HC, et al. Incorporating sarcopenia and inflammation with radiation therapy in patients with hepatocellular carcinoma treated with nivolumab[J]. Cancer Immunol Immunother, 2021, 70(6):1593-1603.
doi: 10.1007/s00262-020-02794-3 pmid: 33231725 |
[16] |
Kano M, Hihara J, Tokumoto N, et al. Association between skeletal muscle loss and the response to nivolumab immunotherapy in advanced gastric cancer patients[J]. Int J Clin Oncol 2021, 26(3):523-531.
doi: 10.1007/s10147-020-01833-4 pmid: 33226523 |
[17] | Shimizu T, Miyake M, Hori S, et al. Clinical impact of sarcopenia and inflammatory/nutritional markers in patients with unresectable Metastatic urothelial carcinoma treated with pembrolizumab[J]. Diagnostics (Basel), 2020, 10(5). |
[18] |
Fukushima H, Fukuda S, Moriyama S, et al. Impact of sarcopenia on the efficacy of pembrolizumab in patients with advanced urothelial carcinoma: A preliminary report[J]. Anticancer Drugs, 2020, 31(8):866-871.
doi: 10.1097/CAD.0000000000000982 pmid: 32740015 |
[19] |
Cortellini A, Verna L, Porzio G, et al. Predictive value of skeletal muscle mass for immunotherapy with nivolumab in non-small cell lung cancer patients: A "hypothesis-generator" preliminary report[J]. Thorac Cancer, 2019, 10(2):347-351.
doi: 10.1111/1759-7714.12965 pmid: 30600905 |
[20] |
Nishioka N, Naito T, Notsu A, et al. Unfavorable impact of decreased muscle quality on the efficacy of immunotherapy for advanced non-small cell lung cancer[J]. Cancer Med, 2021, 10(1):247-256.
doi: 10.1002/cam4.3631 URL |
[21] |
Daly LE, Power DG, O'Reilly A, et al. The impact of body composition parameters on ipilimumab toxicity and survival in patients with Metastatic melanoma[J]. Br J Cancer 2017, 116(3):310-317.
doi: 10.1038/bjc.2016.431 URL |
[22] |
Deike-Hofmann K, Gutzweiler L, Reuter J, et al. Macroangiopathy is a positive predictive factor for response to immunotherapy[J]. Sci Rep, 2019, 9(1):9728.
doi: 10.1038/s41598-019-46189-6 pmid: 31278360 |
[23] |
Chu MP, Li Y, Ghosh S, Sass S, et al. Body composition is prognostic and predictive of ipilimumab activity in Metastatic melanoma[J]. J Cachexia Sarcopenia Muscle, 2020, 11(3):748-755.
doi: 10.1002/jcsm.12538 pmid: 32053287 |
[24] |
Hirsch L, Bellesoeur A, Boudou-Rouquette P, et al. The impact of body composition parameters on severe toxicity of nivolumab[J]. Eur J Cancer, 2020, 124:170-177.
doi: S0959-8049(19)30810-X pmid: 31794927 |
[25] |
Hu JB, Ravichandran S, Rushing C, et al. Higher BMI, but not sarcopenia, is associated with pembrolizumab-related toxicity in patients with advanced melanoma[J]. Anticancer Res, 2020, 40(9):5245-5254.
doi: 10.21873/anticanres.14528 pmid: 32878813 |
[26] | Young AC, Quach HT, Song H, et al. Impact of body composition on outcomes from anti-PD1 +/- anti-CTLA-4 treatment in melanoma[J]. J Immunother Cancer, 2020, 8(2). |
[27] |
Akce M, Liu Y, Zakka K, Martini DJ, et al. Impact of sarcopenia, BMI, and inflammatory biomarkers on survival in advanced hepatocellular carcinoma treated with anti-PD-1 antibody[J]. Am J Clin Oncol, 2021, 44(2):74-81.
doi: 10.1097/COC.0000000000000787 URL |
[28] |
Minami S, Ihara S, Tanaka T, et al. Sarcopenia and visceral adiposity did not affect efficacy of immune-checkpoint inhibitor monotherapy for pretreated patients with advanced non-small cell lung cancer[J]. World J Oncol, 2020, 11(1):9-22.
doi: 10.14740/wjon1225 pmid: 32095185 |
[29] |
Kim YY, Lee J, Jeong WK, et al. Prognostic significance of sarcopenia in microsatellite-stable gastric cancer patients treated with programmed death-1 inhibitors[J]. Gastric Cancer, 2021, 24(2):457-466.
doi: 10.1007/s10120-020-01124-x URL |
[30] |
Tsukagoshi M, Yokobori T, Yajima T, et al. Skeletal muscle mass predicts the outcome of nivolumab treatment for non-small cell lung cancer[J]. Medicine (Baltimore), 2020, 99(7):e19059.
doi: 10.1097/MD.0000000000019059 URL |
[31] |
Youn S, Reif R, Chu MP, et al. Myosteatosis is prognostic in Metastatic melanoma treated with nivolumab[J]. Clin Nutr ESPEN, 2021, 42:348-353.
doi: 10.1016/j.clnesp.2021.01.009 pmid: 33745604 |
[32] | Loosen SH, van den Bosch V, et al. Progressive sarcopenia correlates with poor response and outcome to immune checkpoint inhibitor therapy[J]. J Clin Med, 2021, 10(7). |
[33] |
Magri V, Gottfried T, Di Segni M, et al. Correlation of body composition by computerized tomography and Metabolic parameters with survival of nivolumab-treated lung cancer patients[J]. Cancer Manag Res, 2019, 11:8201-8207.
doi: 10.2147/CMAR.S210958 pmid: 31564979 |
[34] |
Deng HY, Chen ZJ, Qiu XM, et al. Sarcopenia and prognosis of advanced cancer patients receiving immune checkpoint inhibitors: A comprehensive systematic review and Meta-analysis[J]. Nutrition, 2021, 90:111345.
doi: 10.1016/j.nut.2021.111345 URL |
[35] |
Wang J, Cao L, Xu S. Sarcopenia affects clinical efficacy of immune checkpoint inhibitors in non-small cell lung cancer patients: A systematic review and meta-analysis[J]. Int Immunopharmacol, 2020, 88:106907.
doi: 10.1016/j.intimp.2020.106907 URL |
[36] | Quinn LS. Interleukin-15: A muscle-derived cytokine regulating fat-to-lean body composition[J]. J Anim Sci, 2008, 86(14 Suppl):E75-83. |
[37] | Lutz CT, Quinn LS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: Altered cytokine levels as a common mechanism[J]. Aging (Albany NY), 2012, 4(8):535-546. |
[38] |
Tsukamoto H, Fujieda K, Miyashita A, et al. Combined blockade of il6 and pd-1/pd-l1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment[J]. Cancer Res, 2018, 78(17):5011-5022.
doi: 10.1158/0008-5472.CAN-18-0118 pmid: 29967259 |
[39] |
Banna GL, Di Quattro R, Malatino L, et al. Neutrophil-to-lymphocyte ratio and lactate dehydrogenase as biomarkers for urothelial cancer treated with immunotherapy[J]. Clin Transl Oncol, 2020, 22(11):2130-2135.
doi: 10.1007/s12094-020-02337-3 URL |
[40] |
Indrakusuma R, Drudi LM. Psoas muscle area and sarcopenia-bridging the gap[J]. Eur J Vasc Endovasc Surg, 2019, 58(2):199.
doi: 10.1016/j.ejvs.2019.03.032 URL |
[41] |
Baracos VE. Psoas as a sentinel muscle for sarcopenia: A flawed premise[J]. J Cachexia Sarcopenia Muscle, 2017, 8(4):527-528.
doi: 10.1002/jcsm.12221 pmid: 28675689 |
[42] |
Rutten IJG, Ubachs J, Kruitwagen R, et al. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer[J]. J Cachexia Sarcopenia Muscle, 2017, 8(4):630-638.
doi: 10.1002/jcsm.12180 pmid: 28513088 |
[43] | Anjanappa M, Corden M, Green A, et al. Sarcopenia in cancer: Risking more than muscle loss[J]. Tech Innov Patient Support Radiat Oncol, 2020, 16:50-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||