Clinical Focus ›› 2024, Vol. 39 ›› Issue (7): 654-657.doi: 10.3969/j.issn.1004-583X.2024.07.013
Previous Articles Next Articles
Received:
2024-02-20
Online:
2024-07-20
Published:
2024-08-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.07.013
食物 名称 | 蛋白质 含量(g) | BCAAs含量(mg) | ||||
---|---|---|---|---|---|---|
Val | Leu | Ile | 总计 | 占蛋白质 含量的比例(%) | ||
鸡胸脯肉 | 24.6 | 1 120 | 1 900 | 930 | 3 950 | 16.06 |
鸡蛋(全) | 13.1 | 636 | 1 047 | 649 | 2 332 | 17.80 |
蛋黄 | 15.2 | 805 | 1 132 | 835 | 2 772 | 18.24 |
草鱼 | 16.6 | 899 | 1 310 | 751 | 2 960 | 17.83 |
牛肉 | 20.0 | 936 | 1 563 | 850 | 3 349 | 16.75 |
对虾 | 18.6 | 841 | 1 451 | 757 | 3 049 | 16.39 |
纯牛奶 | 3.3 | 178 | 291 | 146 | 615 | 18.63 |
大豆 | 35.1 | 1 952 | 3 184 | 1 896 | 7 032 | 20.03 |
食物 名称 | 蛋白质 含量(g) | BCAAs含量(mg) | ||||
---|---|---|---|---|---|---|
Val | Leu | Ile | 总计 | 占蛋白质 含量的比例(%) | ||
鸡胸脯肉 | 24.6 | 1 120 | 1 900 | 930 | 3 950 | 16.06 |
鸡蛋(全) | 13.1 | 636 | 1 047 | 649 | 2 332 | 17.80 |
蛋黄 | 15.2 | 805 | 1 132 | 835 | 2 772 | 18.24 |
草鱼 | 16.6 | 899 | 1 310 | 751 | 2 960 | 17.83 |
牛肉 | 20.0 | 936 | 1 563 | 850 | 3 349 | 16.75 |
对虾 | 18.6 | 841 | 1 451 | 757 | 3 049 | 16.39 |
纯牛奶 | 3.3 | 178 | 291 | 146 | 615 | 18.63 |
大豆 | 35.1 | 1 952 | 3 184 | 1 896 | 7 032 | 20.03 |
[1] | Moura A, Savageau MA, Alves R. Relative amino acid composition signatures of organisms and environments[J]. PLoS One, 2013, 8(10): e77319. |
[2] | 杨月欣. 中国食物成分表[M]6版. 北京: 北京大学医学出版社, 2019. |
[3] |
Yudkoff M. Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS[J]. Neurochem Res, 2017, 42(1):10-18.
doi: 10.1007/s11064-016-2057-z pmid: 27696119 |
[4] |
Knaus LS, Basilico B, Malzl D, et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival[J]. Cell, 2023, 186(9):1950-1967.e25.
doi: 10.1016/j.cell.2023.02.037 pmid: 36996814 |
[5] | Boemer F, Josse C, Luis G, et al. Novel loss of function variant in BCKDK causes a treatable developmental and epileptic encephalopathy[J]. Int J Mol Sci, 2022, 23(4):2253. |
[6] |
García-Cazorla A, Oyarzabal A, Fort J, et al. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients[J]. Hum Mutat, 2014, 35(4):470-477.
doi: 10.1002/humu.22513 pmid: 24449431 |
[7] |
Hull J, Hindy ME, Kehoe PG, et al. Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation[J]. J Neurochem, 2012, 123(6): 997-1009.
doi: 10.1111/jnc.12044 pmid: 23043456 |
[8] |
Hull J, Usmari Moraes M, Brookes E, et al. Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism[J]. Neurochem Int, 2018, 112:49-58.
doi: S0197-0186(17)30258-9 pmid: 29104034 |
[9] | Salcedo C, Andersen JV, Vinten KT, et al. Functional metabolic mapping reveals highly active branched-chain amino acid metabolism in human astrocytes, which is impaired in iPSC-derived astrocytes in Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13:736580. |
[10] | 2024 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2024, 20(5):3708-3821. |
[11] | Berezhnoy G, Laske C, Trautwein C. Metabolomic profiling of CSF and blood serum elucidates general and sex-specific patterns for mild cognitive impairment and Alzheimer’s disease patients[J]. Front Aging Neurosci, 2023, 15:1219718. |
[12] |
Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer's disease: A biochemical road map[J]. Alzheimers Dement, 2017, 13(9):965-984.
doi: S1552-5260(17)30046-8 pmid: 28341160 |
[13] | Yang Z, Wang J, Chen J, et al. High-resolution NMR metabolomics of patients with subjective cognitive decline plus: Perturbations in the metabolism of glucose and branched-chain amino acids[J]. Neurobiol Dis, 2022, 171:105782. |
[14] | Siddik MAB, Shin AC. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond[J]. Endocrinol Metab (Seoul), 2019, 34(3):234-246. |
[15] | Qian XH, Liu XL, et al. Investigating the causal association between branched-chain amino acids and Alzheimer's disease: A bidirectional Mendelian randomized study[J]. Front Nutr, 2023, 10:1103303. |
[16] | Mengr A, Strnadová V, Strnad Š, et al. Feeding high-fat diet accelerates development of peripheral and central insulin resistance and inflammation and worsens AD-like pathology in APP/PS1 mice[J]. Nutrients, 2023, 15(17):3690. |
[17] |
Shin AC, Fasshauer M, Filatova N, et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism[J]. Cell Metab, 2014, 20(5):898-909.
doi: S1550-4131(14)00400-8 pmid: 25307860 |
[18] |
Murashige D, Jung JW, Neinast MD, et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure[J]. Cell Metab, 2022, 34(11):1749-1764.e7.
doi: 10.1016/j.cmet.2022.09.008 pmid: 36223763 |
[19] | Hull J, Patel V, El Hindy M, et al. Regional increase in the expression of the BCAT proteins in Alzheimers disease brain: Implications in glutamate toxicity[J]. J Alzheimers Dis, 2015, 45(3):891-905. |
[20] | Li H, Ye D, Xie W, et al. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer's disease by targeting the mTOR signaling[J]. Biosci Rep, 2018, 38(4): BSR20180127. |
[21] |
Wang XL, Li CJ, Xing Y, et al. Hypervalinemia and hyperleucine-isoleucinemia caused by mutations in the branched-chain amino acid aminotransferase gene[J]. J Inherit Metab Dis, 2015, 38(5):855-861.
doi: 10.1007/s10545-015-9814-z pmid: 25653144 |
[22] |
Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy[J]. Neurobiol Dis, 2015, 84:39-49.
doi: 10.1016/j.nbd.2015.03.014 pmid: 25796566 |
[23] |
Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): Analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD[J]. J Neurochem, 2015, 133(5): 739-749.
doi: 10.1111/jnc.13037 pmid: 25645581 |
[24] |
Tournissac M, Vandal M, Tremblay C, et al. Dietary intake of branched-chain amino acids in a mouse model of Alzheimer's disease: Effects on survival, behavior, and neuropathology[J]. Alzheimers Dement (N Y), 2018, 4: 677-687.
doi: 10.1016/j.trci.2018.10.005 pmid: 30560200 |
[25] | Siddik MAB, Mullins CA, Kramer A, et al. Branched-chain amino acids are linked with Alzheimer’s disease-related pathology and cognitive deficits[J]. Cells, 2022, 11(21):3523. |
[26] | Cascio L, Chen CF, Pauly R, et al. Abnormalities in the genes that encode Large Amino Acid Transporters increase the risk of autism spectrum disorder[J]. Mol Genet Genomic Med, 2020, 8(1): e1036. |
[27] |
Strauss KA, Carson VJ, Soltys K, et al. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes[J]. Mol Genet Metab, 2020, 129(3):193-206.
doi: S1096-7192(19)31291-0 pmid: 31980395 |
[28] |
Zemdegs J, Martin H, Pintana H, et al. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids[J]. J Neurosci, 2019, 39(30):5935-5948.
doi: 10.1523/JNEUROSCI.2904-18.2019 pmid: 31160539 |
[29] |
Knaus LS, Basilico B, Malzl D, et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival[J]. Cell, 2023, 186(9):1950-1967.e25.
doi: 10.1016/j.cell.2023.02.037 pmid: 36996814 |
[30] |
Panjwani AA, Ji Y, Fahey JW, et al. Maternal dyslipidemia, plasma branched-chain amino acids, and the risk of child autism spectrum disorder: Evidence of sex difference[J]. J Autism Dev Disord, 2020, 50(2): 540-550.
doi: 10.1007/s10803-019-04264-x pmid: 31686281 |
[31] |
Fellendorf FT, Platzer M, Pilz R, et al. Branched-chain amino acids are associated with metabolic parameters in bipolar disorder[J]. World J Biol Psychiatry, 2019, 20(10): 821-826.
doi: 10.1080/15622975.2018.1487077 pmid: 29898625 |
[32] | Asor E, Stempler S, Avital A, et al. The role of branched chain amino acid and tryptophan metabolism in rat’s behavioral diversity: Intertwined peripheral and brain effects[J]. Eur Neuropsychopharmacol, 2015, 25(10):1695-1705. |
[33] | Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, et al. Branched-chain amino acids as new biomarkers of major depression-A novel neurobiology of mood disorder[J]. PloS one, 2016, 11(8):e0160542. |
[34] | Blackburn PR, Gass JM, Vairo FPE, et al. Maple syrup urine disease: Mechanisms and management[J]. Appl Clin Genet, 2017, 10:57-66. |
[35] |
Koochakpoor G, Salari-Moghaddam A, Keshteli AH, et al. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress[J]. Nutr J, 2021, 20(1):11.
doi: 10.1186/s12937-021-00670-z pmid: 33514378 |
[36] | Matsuda T, Suzuki H, Sugano Y, et al. Effects of branched-chain amino acids on skeletal muscle, glycemic control, and neuropsychological performance in elderly persons with type 2 diabetes mellitus: An exploratory randomized controlled trial[J]. Nutrients, 2022, 14(19):3917. |
[37] | Nasrallah P, Haidar EA, Stephan JS, et al. Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling[J]. Neurobiol Stress, 2019, 11:100170. |
[1] | Wang Caizhen, Miao Lina, Chen Yuan, Li Shuangcheng. Effectiveness of high-frequency vagus nerve stimulation in the treatment of drug-resistant epilepsy: A meta-analysis [J]. Clinical Focus, 2024, 39(7): 593-597. |
[2] | Zhang Li, Fu Qingxi, Su Mingzhao, Su Quanping. Cerebellar ataxia associated with antibodies against GAD65: A case report and literature review [J]. Clinical Focus, 2024, 39(6): 542-547. |
[3] | Li Qian, Zhong Ping. Clinical characteristics and risk factors of Parkinson's disease with white matter lesions [J]. Clinical Focus, 2024, 39(3): 222-226. |
[4] | Wang Jiuxue, Li Na, Jin Wei, Wang Shuo, Chang Yajun, Wang Tianjun. Correlation between serum uric acid, homocysteine and cystatin C levels with motor symptoms and cognitive function in Parkinson's disease patients [J]. Clinical Focus, 2024, 39(2): 125-129. |
[5] | Ding Siqi, Liu Shihua, Zhang Chao, Zhong Ping, Cao Li. Risk factors for epilepsy after delayed post-stroke epilepsy and its clinical correlation with blood Hcy, hs-CRP and D-D [J]. Clinical Focus, 2023, 38(10): 893-897. |
[6] | . [J]. Clinical Focus, 2023, 38(9): 845-850. |
[7] | . [J]. Clinical Focus, 2023, 38(9): 855-858. |
[8] | Zhao Shuzhen, Wang Sanping, Zhao Xiaoyun. SLC32A1 gene mutation in hereditary epilepsy with febrile convulsion addition: A case report and literature review [J]. Clinical Focus, 2023, 38(5): 451-454. |
[9] | . [J]. Clinical Focus, 2023, 38(2): 189-192. |
[10] | Sun Zhenxiao, Zhao Lin. Gabapentin treatment in olanzapine-induced restless legs syndrome: Two cases report and literature review [J]. Clinical Focus, 2023, 38(1): 68-70. |
[11] | Li Wenjun, Zhang Ce, Liu Junyan. Improving circulation aggravates the orthostatic hypotension in a patient with Parkinson's disease: A case report [J]. Clinical Focus, 2022, 37(10): 934-937. |
[12] | . [J]. Clinical Focus, 2022, 37(5): 463-466. |
[13] | Guo Chang, Shen Huinan, Sun Yimeng, Wang Dongyu. Correlation between blood lipid and homocysteine and cognitive impairment in Parkinson's disease [J]. Clinical Focus, 2022, 37(2): 128-132. |
[14] | Li Dan, Hua Guohui. Application value of cerebrospinal fluid and serum PCT and CRP in diagnosis of central nervous system infection [J]. Clinical Focus, 2021, 36(8): 704-707. |
[15] | . [J]. Clinical Focus, 2021, 36(4): 379-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||