临床荟萃 ›› 2021, Vol. 36 ›› Issue (10): 951-955.doi: 10.3969/j.issn.1004-583X.2021.10.017
收稿日期:
2021-06-07
出版日期:
2021-10-20
发布日期:
2021-11-10
通讯作者:
于晓华
E-mail:yxhlyszxyy@163.com
Received:
2021-06-07
Online:
2021-10-20
Published:
2021-11-10
摘要:
骨质疏松症(osteoporosis,OP)以骨量低,骨组织微结构被破坏为特征,可导致骨脆性增加并易发生骨折。血尿酸(uric acid,UA)是人体嘌呤代谢的重要产物之一,正常水平下UA本身具有抗氧化性起到骨保护作用,但高水平的UA代谢产物反而可以诱导氧化应激,导致骨损伤。血UA也可以直接作用于多种骨代谢相关细胞,且在人体中受多种因素影响,包括维生素D及甲状旁腺激素(parathyroid hormone,PTH)等。近年来,国内外对OP与血清UA相关性的研究较多,但具体确切关系仍有所争议。本文探究血清UA水平与OP之间的关系,为临床治疗研究提供新的思路。
中图分类号:
陈俏, 于晓华. 骨质疏松与血尿酸相关性研究进展[J]. 临床荟萃, 2021, 36(10): 951-955.
[1] | 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中国骨质疏松杂志, 2019,25(3):281-309. |
[2] | 中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019,12(4):317-318. |
[3] |
Bonaccorsi G, Piva I, Greco P, et al. Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: Existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss[J]. Indian J Med Res, 2018,147(4):341-351.
doi: 10.4103/ijmr.IJMR_524_18 pmid: 29998869 |
[4] | Domazetovic V, Marcucci G, Iantomasi T, et al. Oxidative stress in bone remodeling: Role of antioxidants[J]. Clin Cases Miner Bone Metab, 2017,14(2):209-216. |
[5] | Zahan OM, Serban O, Gherman C, et al. The evaluation of oxidative stress in osteoarthritis[J]. Med Pharm Rep, 2020,93(1):12-22. |
[6] | 杨霞, 赵琳. 维生素D基因多态性研究进展[J]. 广西医学, 2019,41(21):2774-2777. |
[7] |
Zhang L, Yin X, Wang J, et al. Associations between VDR gene polymorphisms and osteoporosis risk and bone mineral density in postmenopausal women: A systematic review and meta-analysis[J]. Sci Rep, 2018,8(1):981.
doi: 10.1038/s41598-017-18670-7 URL |
[8] |
Marozik PM, Tamulaitiene M, Rudenka E, et al. Association of Vitamin D receptor gene variation with osteoporosis risk in Belarusian and Lithuanian postmenopausal women[J]. Front Endocrinol (Lausanne), 2018,9:305.
doi: 10.3389/fendo.2018.00305 URL |
[9] | 邵娜, 王硕, 栗瑶, 等. 血清25-(OH)D水平与儿童矮身材的关系[J]. 临床荟萃, 2021,36(4):353-356. |
[10] | 毛未贤, 张萌萌, 马倩倩, 等. 绝经后骨质疏松B细胞、T细胞亚群、免疫调控因子与骨密度相关性研究[J]. 中国骨质疏松杂志, 2020,26(12):1732-1736,1741. |
[11] | 张慎启, 石磊, 李文金, 等. 骨质疏松相关骨免疫学进展[J]. 中国老年学杂志, 2021,41(13):2907-2912. |
[12] |
Weitzmann MN. Bone and the immune system[J]. Toxicol Pathol, 2017,45(7):911-924.
doi: 10.1177/0192623317735316 pmid: 29046115 |
[13] |
Wrigley R, Phipps-Green AJ, Topless RK, et al. Pleiotropic effect of the ABCG2 gene in gout: Involvement in serum urate levels and progression from hyperuricemia to gout[J]. Arthritis Res Ther, 2020,22(1):45.
doi: 10.1186/s13075-020-2136-z URL |
[14] |
Lin KM, Lu CL, Hung KC, et al. The paradoxical role of uric acid in osteoporosis[J]. Nutrients, 2019,11(9):2111.
doi: 10.3390/nu11092111 URL |
[15] |
Fatima T, McKinney C, Major TJ, et al. The relationship between ferritin and urate levels and risk of gout[J]. Arthritis Res Ther, 2018,20(1):179.
doi: 10.1186/s13075-018-1668-y URL |
[16] |
Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo[J]. Metabolism, 2014,63(1):150-160.
doi: 10.1016/j.metabol.2013.09.018 URL |
[17] | Mohammed A, Marie MA, Abdulazim DO, et al. Serum urate lowering therapy using allopurinol improves serum 25 hydroxy Vitamin D in stage 3-5 CKD patients: A pilot study[J]. Nephron, 2021,145(2):133-136. |
[18] |
Dai XJ, Tao JH, Fang X, et al. Changes of Treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals[J]. Inflammation, 2018,41(5):1955-1964.
doi: 10.1007/s10753-018-0839-y URL |
[19] |
Baey C, Yang J, Ronchese F, et al. Hyperuricaemic UrahPlt2/Plt2 mice show altered T cell proliferation and defective tumor immunity after local immunotherapy with Poly I:C[J]. PLoS One, 2018,13(11):e0206827.
doi: 10.1371/journal.pone.0206827 URL |
[20] | 陈莹, 唐珊珊, 彭永德, 等. 高尿酸血症与肿瘤免疫机制的研究进展[J]. 医学综述, 2021,27(3):487-491. |
[21] | Ahn SH, Lee SH, Kim BJ, et a1. Higher serum uric acid is associated with higher bone mass,lower bone turnover and lower prevalence of vertebral fracture in healthy postmenopausal women[J]. Osteoporos Int, 2013,24(12):296l-2970. |
[22] | 王淑芳, 杨乃龙, 孙玉英, 等. 尿酸对类成骨细胞(MG-63)增殖的影响及其机制研究[J]. 现代生物医学进展, 2017,17(12):2227-2231,2240. |
[23] | 孙文婷, 阎小萍, 陶庆文, 等. 尿酸对骨质疏松症骨代谢作用机制的研究进展[J]. 中日友好医院学报, 2020,34(4):230-232. |
[24] | 张山山, 杨乃龙, 徐丽丽, 等. 尿酸对人骨髓间充质干细胞成骨分化中Cbfα1/Runx2表达的影响[J]. 中国骨质疏松杂志, 2013,19(4):363-366,344. |
[25] | 王潇丽, 徐丽丽, 杨乃龙. 尿酸对人骨髓间充质干细胞成骨分化过程中Wnt信号通路的影响[J]. 中国组织工程研究, 2015,(28):4472-4477. |
[26] |
Lai JH, Luo SF, Hung LF, et al. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory[J]. Sci Rep, 2017,7(1):2359.
doi: 10.1038/s41598-017-02640-0 URL |
[27] |
Kaushal N, Vohora D, Jalali RK, et al. Raised serum uric acid is associated with higher bone mineral density in a cross-sectional study of a healthy Indian population[J]. Ther Clin Risk Manag, 2018,14:75-82.
doi: 10.2147/TCRM URL |
[28] | Pan K, Yao X, Liu M, et al. Association of serum uric acid status with bone mineral density in adolescents aged 12-19 years[J]. Front Med (Lausanne), 2020,7:255. |
[29] |
Karimi F, Dabbaghmanesh MH, Omrani GR. Association between serum uricacid and bone health in adolescents[J]. Osteoporos Int, 2019,30(10):2057-2064.
doi: 10.1007/s00198-019-05072-w pmid: 31278471 |
[30] |
Ahn SH, Lee SH, Kim BJ, et al. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women[J]. Osteoporos Int, 2013,24(12):2961-2970.
doi: 10.1007/s00198-013-2377-7 pmid: 23644878 |
[31] |
Bonaccorsi G, Trentini A, Greco P, et al. Changes in adipose tissue distribution and association between uric acid and bone health during menopause transition[J]. Int J Mol Sci, 2019,20(24):6321.
doi: 10.3390/ijms20246321 URL |
[32] | 查敏, 杨乃龙, 李玲, 等. 绝经后女性及老年男性骨密度与血尿酸的相关性[J]. 中华骨质疏松和骨矿盐疾病杂志, 2018,11(4):359-364. |
[33] | 井源, 孙健斌, 张晓梅. 老年2型糖尿病患者血尿酸水平与骨代谢、骨密度及骨质疏松的关系[J]. 中国骨质疏松杂志, 2021,27(1):114-118,138. |
[34] | 魏婷, 董旋, 高飞. 2型糖尿病患者血尿酸水平与骨密度及骨转换标志物的相关性分析[J]. 中国骨质疏松杂志, 2020,26(1):99-104. |
[35] |
Yan P, Zhang Z, Wan Q, et al. Association of serum uric acid with bone mineral density and clinical fractures in Chinese type 2 diabetes mellitus patients:A cross-sectional study[J]. Clin Chim Acta, 2018,486:76-85.
doi: 10.1016/j.cca.2018.07.033 URL |
[36] |
Mehta T, Bůžková P, Sarnak MJ, et al. Serum urate levels and the risk of hip fractures: Data from the cardiovascular health study[J]. Metabolism, 2015,64(3):438-446.
doi: 10.1016/j.metabol.2014.11.006 URL |
[37] |
Paik JM, Kim SC, Feskanich D, et al. Gout and risk of fracture in women: A prospective cohort study[J]. Arthritis Rheumatol, 2017,69(2):422-428.
doi: 10.1002/art.39852 URL |
[38] |
Kok VC, Horng JT, Wang MN, et al. Gout as a risk factor for osteoporosis: Epidemiologic evidence from a population-based longitudinal study involving 108, 060 individuals[J]. Osteoporos Int, 2018,29(4):973-985.
doi: 10.1007/s00198-018-4375-2 pmid: 29383389 |
[39] | 张小兰, 曹克光. 尿酸与疾病[J]. 临床荟萃, 2006,21(3):225-227. |
[40] | Chin KY, Nirwana SI, Ngah WZ. Significant association between parathyroid hormone and uric acid level in men[J]. Clin Interv Aging, 2015,10:1377-1380. |
[41] |
Tzeng HE, Lin CC, Wang IK, et al. Gout increases risk of fracture: A nationwide population-based cohort study[J]. Medicine (Baltimore), 2016,95(34):e4669.
doi: 10.1097/MD.0000000000004669 URL |
[42] |
Sultan AA, Whittle R, Muller S, et al. Risk of fragility fracture among patients with gout and the effect of urate-lowering therapy[J]. CMAJ, 2018,190(19):e581-e587.
doi: 10.1503/cmaj.170806 URL |
[43] |
Zong Q, Hu Y, Zhang Q, et al. Associations of hyperuricemia, gout, and UA-lowering therapy with the risk of fractures: A meta-analysis of observational studies[J]. Joint Bone Spine, 2019,86(4):419-427.
doi: 10.1016/j.jbspin.2019.03.003 URL |
[1] | 王九雪, 李娜, 靳玮, 王硕, 常雅君, 王天俊. 帕金森病患者血清尿酸、同型半胱氨酸和胱抑素C水平与运动症状及认知功能的相关性[J]. 临床荟萃, 2024, 39(2): 125-129. |
[2] | 张娜娜, 崔轶霞, 邹琳. 类风湿关节炎患者骨密度与维生素D相关性研究进展[J]. 临床荟萃, 2024, 39(1): 92-96. |
[3] | 魏宇涵, 赵亚楠, 张桂彬, 吴雨晴, 董博华, 扈家源, 杨文琦. 单核细胞/高密度脂蛋白胆固醇比值、红细胞分布宽度、尿酸与冠心病患者冠状动脉病变严重程度的相关性[J]. 临床荟萃, 2023, 38(9): 796-801. |
[4] | 蒋炜, 田敏涛, 李学渊. 血清营养指标与老年骨质疏松症关系的研究进展[J]. 临床荟萃, 2023, 38(7): 668-672. |
[5] | 刘静, 罗娜, 冯尚勇, 王艳, 张真稳, 佘敦敏. 2020年扬州地区体检人群高尿酸患病率及其危险因素分析[J]. 临床荟萃, 2023, 38(5): 428-432. |
[6] | 沈雪娇, 李燕, 王挺, 王媛. 痛风性关节炎血管内皮功能及其与血尿酸水平的相关性[J]. 临床荟萃, 2023, 38(3): 241-244. |
[7] | 刘彬, 翟桂兰, 孙巨峰. 中性粒细胞计数联合血尿酸对急性一氧化碳中毒患者心肌损伤的预测价值[J]. 临床荟萃, 2023, 38(3): 245-249. |
[8] | 邹琳, 崔轶霞, 张娜娜, 陈思荣. 类风湿关节炎合并骨质疏松症发病机制和相关治疗药物对骨质疏松症影响的研究进展[J]. 临床荟萃, 2023, 38(3): 279-284. |
[9] | 刘亚鑫, 郭岚, 王泽凯, 牛凯. 慢性肾脏病合并骨质疏松症治疗的研究进展[J]. 临床荟萃, 2023, 38(12): 1146-1149. |
[10] | 鞠岩, 郭鹏, 吴伯韬, 刘新宇. 唾液血液尿酸比与糖尿病周围神经病变的相关性[J]. 临床荟萃, 2023, 38(1): 37-41. |
[11] | 王会新, 赵芳晴, 张馨妍, 侯晓雯. 中国人尿酸水平与急性缺血性脑卒中患者预后关系的meta分析[J]. 临床荟萃, 2022, 37(9): 785-790. |
[12] | 俞杭, 邬秀娣. 尿酸作用于Keap1/Nrf2通路调控强直性脊柱炎氧化应激的研究进展[J]. 临床荟萃, 2022, 37(5): 472-476. |
[13] | 高士欣, 宋冰, 施克新. 血清脂蛋白α、胱抑素-C和尿酸检测对早期糖尿病肾病的诊断价值[J]. 临床荟萃, 2022, 37(3): 248-252. |
[14] | 张雪晴, 陈树春. 血尿酸与高密度脂蛋白胆固醇比值在糖脂代谢相关疾病中的研究进展[J]. 临床荟萃, 2022, 37(11): 1044-1047. |
[15] | 陈洁, 陈树, 尹玉峰, 常新, 武剑. 腰椎CT值对骨质疏松症诊断价值的meta分析[J]. 临床荟萃, 2022, 37(11): 970-976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||