临床荟萃 ›› 2024, Vol. 39 ›› Issue (9): 773-779.doi: 10.3969/j.issn.1004-583X.2024.09.001

• 循证研究 •    下一篇

慢性阻塞性肺疾病再入院风险预测模型的系统评价

朱洁云, 高敏, 黄春莉, 潘冬赞, 王俏燕, 陆钊()   

  1. 广西壮族自治区人民医院 国际医疗部,广西 南宁 530021
  • 收稿日期:2024-04-29 出版日期:2024-09-20 发布日期:2024-09-24
  • 通讯作者: 陆钊 E-mail:18677103725@163.com

Risk prediction model for readmission of chronic obstructive pulmonary disease: A systematic review

Zhu Jieyun, Gao Min, Huang Chunli, Pan Dongzan, Wang Qiaoyan, Lu Zhao()   

  1. International Medical Services,the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021,China
  • Received:2024-04-29 Online:2024-09-20 Published:2024-09-24
  • Contact: Lu Zhao E-mail:18677103725@163.com

摘要:

目的 系统评价慢性阻塞性肺疾病(COPD)再入院风险预测模型,为模型的构建和优化提供参考。方法 计算机检索中国知网(CNKI)、维普网(VIP)、万方医学数据库、Cochrane Library、PubMed和Embase,查找关于COPD再入院风险预测模型的研究,检索时限均为建库至2023年11月22日。由2名研究人员独立对文献进行筛选、提取资料,并采用PROBAST工具评价模型的偏倚风险和适用性。结果 最终纳入12项队列研究,包含21个模型。11项研究报告了受试者操作特征曲线下面积(AUC),1个研究报告了C指数;AUC波动在0.603~0.917, 其中16个模型的AUC>0.7;6项研究进行了模型校准,8项研究进行了内部或外部验证;12项研究的总体适用性较好,但存在较高的偏倚风险,主要表现在分析领域。纳入研究的预测因素差异较大,最常见的预测因素有肺功能指标、Charlson共病指数、前1年因急性加重入院次数、嗜酸性粒细胞水平、吸入药物治疗。 结论 纳入模型间性能差异较大,适用性良好但偏倚风险高;预测因子的筛选方法不够全面,纳入研究的预测因素差异较大,未来的预测模型可重点关注肺功能、Charlson共病指数、前1年因急性加重入院次数、嗜酸性粒细胞水平和吸入药物治疗情况。

关键词: 肺疾病, 慢性阻塞性, 再入院, 预测模型, 系统评价

Abstract:

Objective To systematically evaluate the risk for readmission in patients with chronic obstructive pulmonary disease (COPD) and provide references for the construction and optimization of prediction model.Methods The literatures on the risk prediction model for COPD readmission were independently screened in China National Knowledge Infrastructure (CNKI), VIP, WanFang Data, Cochrane Library, PubMed, Embase databases from database inception to November 22, 2023 by two researchers. After extracting data, the bias risk and applicability of the models were evaluated using the PROBAST tool. Results Twelve cohort studies representing 21 models were finally included. Eleven studies reported the area under a receiver operator characteristic (ROC) curve (AUC) and one study for the C-index. The AUC ranged from 0.603 to 0.917, with AUC>0.7 for 16 models. Six studies conducted model calibration and eight studies for internal or external validation. The overall applicability of the 12 studies was good, but with a high risk of bias, mainly in the analysis domain. The included studies had significant differences in the predictive factors, with the most common predictive factors of lung function indicators, Charlson comorbidity index, times of hospitalization due to a history of acute exacerbation during the previous year, eosinophil levels, and inhaled drug therapy. Conclusion The performance of the included models varied greatly, with good applicability but high risk of bias. Due to the incomplete screening method, and there were significant differences in predictive factors of the included studies. Future prediction models should focus on lung function, Charlson comorbidity index, times of hospitalization due to a history of acute exacerbation during the previous year, eosinophil levels, and inhaled drug therapy.

Key words: pulmonary disease, chronic obstructive, rehospitalization, prediction model, systematic review

中图分类号: