[1] |
《慢性阻塞性肺疾病诊治指南(2021年修订版)》诊断要点诊断要点[J]. 实用心脑肺血管病杂志, 2021, 29(6):134.
|
[2] |
胡国平, 李玉群, 吴泽龙, 等. 慢性阻塞性肺疾病急性加重与慢性阻塞性肺疾病合并社区获得性肺炎的差异性研究[J]. 中国临床新医学, 2018, 11(7):629-632.
|
[3] |
张紫薇, 詹立睿, 李文, 等. 慢性阻塞性肺疾病急性加重风险预测模型的系统评价[J]. 中国呼吸与危重监护杂志, 2022, 21(9):622-628.
|
[4] |
Ko FW, Chan KP, Hui DS, et al. Acute exacerbation of COPD[J]. Respirology, 2016, 21(7):1152-1165.
doi: 10.1111/resp.12780
pmid: 27028990
|
[5] |
Erhabor GE, Adeniyi B, Arawomo AO, et al. Acute exacerbation of COPD: Clinical perspectives and literature review[J]. West Afr J Med, 2021, 38(11):1129-1142.
|
[6] |
Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: What, why, and how?[J]. BMJ, 2009, 23(338): 375.
|
[7] |
宋歌. 老年慢性阻塞性肺疾病患者认知衰弱风险预测模型的构建及验证[D]. 太原: 山西医科大学, 2022.
|
[8] |
周丹, 陈灵敏, 陈钢强, 等. 构建Nomogram预测模型探讨慢性阻塞性肺疾病患者并发呼吸衰竭的危险因素[J]. 中国急救医学, 2023, 43(5):383-387.
|
[9] |
林泽辉. 慢性阻塞性肺疾病急性加重患者院内死亡临床预测模型的构建与验证[D]. 广州: 广州中医药大学, 2020.
|
[10] |
张瑞, 吴珍珍, 常艳, 等. 老年慢性阻塞性肺疾病患者30天内急性加重再入院风险预测模型的构建与验证[J]. 中国呼吸与危重监护杂志, 2021, 20(7):457-464.
|
[11] |
鲍姨琴, 魏冰冰, 鲍张民, 等. 基于营养风险筛查2002评分构建慢性阻塞性肺疾病急性加重期患者出院后90 d内非计划性再入院风险预测模型[J]. 临床军医杂志, 2022, 50(8):814-817+820.
|
[12] |
徐秀娟, 徐栋庭, 邱凯莎. 慢性阻塞性肺疾病患者1年再入院的临床预测模型构建[J]. 临床肺科杂志, 2022, 27(8):1197-1202.
|
[13] |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist[J]. PLoS Med, 2014, 11(10):e1001744.
|
[14] |
Moons KGM, Wolff RF, Riley RD, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med, 2019, 170(1):51-58.
doi: 10.7326/M18-1376
pmid: 30596875
|
[15] |
陈茹, 王胜锋, 周家琛, 等. 预测模型研究的偏倚风险和适用性评估工具解读[J]. 中华流行病学杂志, 2020, 41(5):776-781.
|
[16] |
杨舒雯. 慢性阻塞性肺疾病急性加重患者再入院的相关危险因素分析[D]. 福州: 福建医科大学, 2021.
|
[17] |
喻莹. 慢性阻塞性肺疾病患者再入院危险因素分析[D]. 南昌: 南昌大学, 2023.
|
[18] |
路晓云. 基于机器学习的慢阻肺患者再入院预测和风险分类[D]. 广州: 广东工业大学, 2022.
|
[19] |
张桂梅. COPD患者再入院危险因素分析及预测模型的构建[D]. 昆明: 昆明医科大学, 2022.
|
[20] |
Wu YK, Lan CC, Tzeng IS, et al. The COPD-readmission (CORE) score: A novel prediction model for one-year chronic obstructive pulmonary disease readmissions[J]. J Formos Med Assoc, 2021, 120(3):1005-1013.
|
[21] |
Chen L, Chen S. Prediction of readmission in patients with acute exacerbation of chronic obstructive pulmonary disease within one year after treatment and discharge[J]. BMC Pulm Med, 2021, 21(1):320.
doi: 10.1186/s12890-021-01692-3
pmid: 34654406
|
[22] |
Li J, Ma X, Zeng X, et al. Risk factors of readmission within 90 days for chronic obstructive pulmonary disease patients with frailty and construction of an early warning model[J]. Int J Chron Obstruct Pulmon Dis, 2023,18:975-984.
|
[23] |
Goto T, Jo T, Matsui H, et al. Machine learning-based prediction models for 30-day readmission after hospitalization for chronic obstructive pulmonary disease[J]. COPD, 2019 ;16(5-6):338-343.
|
[24] |
张瑞, 常艳, 张晓娜, 等. Logistic回归和BP神经网络及支持向量机模型对老年COPD患者30 d内急性加重再入院风险的预测性能比较[J]. 中华危重病急救医学, 2022, 34(8):819-824.
|
[25] |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement[J]. BMJ, 2015,350:g7594.
|
[26] |
Lee SJ, Lee HR, Lee TW, et al. Usefulness of neutrophil to lymphocyte ratio in patients with chronic obstructive pulmonary disease: A prospective observational study[J]. Korean J Intern Med, 2016, 31(5):891-898.
doi: 10.3904/kjim.2015.084
pmid: 27017385
|
[27] |
Zhang J, Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease[J]. Tanaffos, 2018, 17(1):13-21.
|